
Spring 2019, MT-MA2
Start: February 2019

Finish: June 2019

Dual Fisheye Camera Calibration
Darko Lukic

Professor: Jan Skaloud
Assistant: Davide Antonio Cucci

Contents

1 Introduction 3

2 Background 5
2.1 Pinhole Camera . 5
2.2 Projection Models . 6
2.3 Fisheye Camera Models . 8

2.3.1 OpenCV Camera Model 8
2.3.2 Pix4D Camera Model . 9

2.4 Non-linear Least Squares Optimisation 10
2.4.1 Jacobian Matrix . 10
2.4.2 Covariance Matrix . 11
2.4.3 Correlation Matrix . 11

3 Simulation 13
3.1 Visualisation . 13
3.2 Building Blocks for Creating Layouts 15

4 Calibration 18
4.1 Chessboard Corner Extraction 18

4.1.1 Semi-automatic Tool for Highly Distorted Images 19
4.2 Single Camera Calibration . 20

4.2.1 Initial Parameters . 20
4.2.2 Non-linear Least Square Optimisation 20
4.2.3 Performance Optimisation 21

4.3 Dual Camera Calibration . 23
4.3.1 Initial Parameters . 24
4.3.2 Non-linear Least Square Optimisation 24

4.4 Calibration Software Module . 25

5 Results 27
5.1 Optimal Calibration Layout . 27

5.1.1 Distance between cameras and origin O 27
5.1.2 Different values of angle α 29
5.1.3 Different locations of points 29

1

5.1.4 Gaussian noise . 31
5.2 Intrinsic and Extrinsic Parameters of Single Camera 31
5.3 Dual Camera Calibration . 34

6 Conclusion 36

2

Chapter 1

Introduction

Laboratory TOPO1 from EPFL aims to use a dual fisheye camera for en-
vironment mapping. For this purpose camera Ricoh Theta V2 from company
Theta360 is chosen. However, for accurate 3D mapping accurate estimation of
intrinsic parameters of the camera is required. The estimated camera parame-
ters have to be compatible with Pix4D camera model since Pix4D will be used
for 3D reconstruction of the environment. Currently, there is a robust software
for the camera calibration, but it is not capable of calibrating the dual camera,
like Ricoh Theta V, and it doesn’t produce parameters compatible with Pix4D
camera model.

The objective of this project is to choose an appropriate camera model to
describe Ricoh Theta V dual lenses and to develop a calibration software. In
addition, simulation of the calibration procedure and detailed analysis of the
obtained results have to be done.

In the first chapter (Chapter 2) a basic theoretical background required for
camera calibration will be given. A simple camera model will be described,
different projection models compared and two fisheye camera models (that are
important for the project) introduced. In the same chapter non-linear least
squares optimisation will be explained with a focus on aspects important for
the camera calibration.

In order to avoid the uncertainty of the real-world environment simulation is
created (Chapter 3). Position and orientation of cameras are visualised to enable
visual inspection of the results. More importantly, a procedure of generating
different constellations (for a quality data acquisition) is described.

In the following chapter (Chapter 4) process of the fisheye camera calibration
will be reported. For the camera calibration observed points are required and
those are gathered from a chessboard. The points are used to calibrate two
cameras of Ricoh Theta V independently. After parameters of the independent
cameras are known rotation between two cameras can be estimated. Mentioned
procedures will be described in the chapter about calibration.

1https://www.epfl.ch/labs/topo/
2https://theta360.com/en/about/theta/v.html

3

Results with detailed explanation will be given in Chapter 5. Results for the
optimal procedure of data acquisition, independent camera calibration and dual
camera calibration will be given independently. Additional material, matrices,
residual analysis and variance will be provided as well to support the obtained
results.

Finally, the results and the project will be discussed in Chapter 6.

4

Chapter 2

Background

In this chapter, the basic knowledge of camera calibration will be given.
Firstly, image projection will be explained for a simple camera without lenses
- pinhole camera (Section 2.1). Different types of camera lenses have different
projections, therefore there are many projection models to describe them. Also,
different entities can impose different camera models. The models will be ex-
plained in the following sections (Section 2.2 and 2.3). Finally, a theoretical
approach for camera calibration using non-linear least square optimisation will
be given (Section 2.4).

2.1 Pinhole Camera

A pinhole camera is a very basic camera without lenses. It has one tiny hole
(aperture) which allows the camera to receive light from a scene. The scene is
then projected to the other side of the camera. The pinhole camera is important
because it doesn’t introduce distortion, can be explained using simple equations
and it is a basis for more complex camera models. A model of the pinhole
camera is given by Fig. 2.1.

5

Figure 2.1: Model of a pinhole camera [12]

In the given pinhole camera model point P is located in a world coordi-
nates X,Y, Z. The point is projected on an image plane at image coordinates
u, v (mathematical coordinates x, y). Principal point (cx, cy) is a centre of a
mathematical coordinate system of the image and a focal length is a distance
between the image plane and the focal point (Fc). The camera is located at
world coordinates Xc, Yc, Zc with Zc pointed at the scene.

This gives us enough information, so we can calculate where the point P
projected on the image plane. First, we can express mathematical coordinates
on the image plane as: xy

z

 = R

XY
Z

+ T (2.1)

where R and T are rotation and translation of camera in respect to the world
respectively. The rotation R is expressed as a 3D rotation matrix. Now, we can
express it in the image coordinates:(

u
v

)
=

(
fx

x
z + cx

fy
y
z + cy

)
(2.2)

Unfortunately, the pinhole camera model is usually not applicable to real-
world scenarios. Almost all modern cameras have some distortion which will be
explained in the following sections.

2.2 Projection Models

Lenses enable the camera to catch more light, ensuring images of higher
quality, but they also introduce deviation from ideal mapping. Most notably

6

those are distortions (e.g. barrel, pincushion and moustache) and spherical
aberration. In order to describe distortions a few projection models are proposed
(see Fig. 2.2).

(a) Relation between angle θ and radial
distance r

(b) A model of a camera with a radial
distortion

Figure 2.2: Different projection models [10]

In Fig. 2.2a angle θ represents an angle between Z axis of camera (Zc) and
a vector from camera origin to a point in the world (P , see Fig. 2.2b). Radial
distance r is a distance between principle point and projected point P on the
image plane. The plot represents relation between those two parameters (θ and
r) for different projection models. The following projections are shown:

• r = ftan(θ) i. perspective projection

• r = 2ftan(θ2) ii. stereographic projection

• r = fθ iii. equidistance projection

• r = 2fsin(θ2) iv. equisolid angle projection

• r = fsin(θ) v. orthogonal projection

According to Juho Kannala and Sami S. Brandt [10] stereographic, equidis-
tance, equisolid and orthogonal projections are suitable for describing fisheye
projection. However, further, in the project, we are going to use the equidis-
tance projection. The equidistance projection is chosen because it complies with
the further described fisheyecamera models.

7

2.3 Fisheye Camera Models

A fisheye camera lens is ultra-wide angle lens which creates a high visual
distortion. The distortion is created by purpose in order to obtain hemispherical
images. Those lenses have found many applications but they lack an accurate,
generic, and easy-to-use calibration [10]. In order to solve the issue, different
entities proposed mathematical models to describe the distortion. Since this
project aims to provide calibration parameters for Pix4D we will further use and
describe the model proposed by Pix4D. Also, since OpenCV provides calibration
tools for fisheye lenses we will use their fisheye camera model to validate our
results.

2.3.1 OpenCV Camera Model

As previously stated OpenCV fisheye camera calibration tools [12] are used
as a reference for some of the further experiments. In the following text,
OpenCV fisheye camera model will be described. A convention used to describe
the following and all other models is:

• Capital letters (e.g. X) describe points and transformations in the three-
dimensional world.

• Lowercase letters (e.g. x) represent scalars and vectors.

• Index c describes coordinates of points in respect to the camera coordinate
system.

• Index h describes homogeneous coordinates.

• Points without an index are points in the world coordinate system.

For OpenCV fisheye camera model first we find rotation (R) and translation
(T) of camera in respect of to the world coordinates (X)

Xc = RX + T (2.3)

Then, we find pinhole projection coordinates as follows:

Xh =

xc

zc
yc
zc
1

 (2.4)

r =
√
x2h + y2h (2.5)

θ = arctan(r) (2.6)

Fisheye distortion is described with 4 polynomial coefficients (k1..4), there-
fore we can obtain angle θ as follows:

θd = θ(1 + k1θ
2 + k2θ

4 + k3θ
6 + k4θ

8) (2.7)

8

Finally, we can write expression of xh and yh in the image plane (ximage):

ximage =

(
fx 0
0 fy

)(
θdxh

r
θdyh
r

)
+

(
cx
cy

)
(2.8)

2.3.2 Pix4D Camera Model

The Pix4D fisheye camera model is published on their webpage [9], but in
the following text, it will be expressed within the same convention as OpenCV
fisheye camera model. The goal is to emphasise difference and show similarities.

Again, we find a point X in camera coordinate system by applying rotation
(R) and translation (T) of the camera in respect of to the world coordinates
(X)

Xc = RX + T (2.9)

Pinhole projection coordinates are not changed:

Xh =

xc

zc
yc
zc
1

 (2.10)

r =
√
x2h + y2h (2.11)

However, angle θ is scaled by 2
π :

θ =
2

π
arctan(r) (2.12)

Fisheye distortion is described with 3 instead of 4 polynomial coefficients in
OpenCV fisheye camera model. Also, powers for angle θ are in the range of 1
— 3 instead of 2 — 8.

θd = θ(1 + k1θ + k2θ
2 + k3θ

3) (2.13)

Finally, for image projection two additional parameters (D and E) are added
to describe affine transformations (e.g. skewing):

ximage =

(
fx D
E fy

)(
θdxh

r
θdyh
r

)
+

(
cx
cy

)
(2.14)

Given camera models are similar, but the most notably OpenCV uses more
polynomial coefficients while Pix4D uses additional D and E coefficients to de-
scribe more affine transformations.

9

2.4 Non-linear Least Squares Optimisation

Non-linear least squares is a standard approach to approximate the solution
of sets of equations in which there are fewer unknowns (xi) than equations. It
is adjusting parameters (β) of function f(x, β) in order fit the best to the given
actual values (yi). The method aims to minimise residuals. The residuals (ri)
are the differences between actual values and values predicted by the model:

ri = yi − f(xi, β) (2.15)

Non-linear least squares method minimises the sum of squared residuals:

S =

m∑
i=1

r2i (2.16)

Minimisation is done in multiple iterations by calculating gradient and cor-
rectioing parameters accordingly:

∂S

∂βj
= 2

m∑
i=1

r2i
∂ri
∂βj

(2.17)

For camera calibration, residuals are differences between observed projected
points (X) on the image plane (xobserved) and calculated projections using cam-
era calibration matrix (ximage). Parameters β of function f(x, β) are intrinsic
(fx, fy, cx, cy, k1, k2...) and extrinsic (T1, R1, T2, R2...) parameters of the
camera. Function f(x, β) for camera calibration is a function which determines
coordinates of projected points on image plane (ximage) with desired camera
model (e.g. OpenCV Camera Model or Pix4D Camera Model mentioned in
previous sections (Section 2.3.1 and Section 2.3.2). We can use fp to name the
function and we can rephrase Equation 2.15 as follows:

ri = xobserved − fp(X,β) (2.18)

There are multiple algorithms solving these equations iteratively (e.g. Gauss-
Newton method) and all of them aim to converge as fast as possible to the
solution and reach the global minimum.

2.4.1 Jacobian Matrix

Algorithms that implement non-linear least squares usually uses a Jaco-
bian matrix. The Jacobian matrix consists of first-order partial derivatives of a
vector-valued function. In general, the Jacobian matrix can be expressed as:

J =

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 (2.19)

10

In the image calibration, m is a number of points and n is number of pa-
rameters of β. Therefore, we can construct Jacobian matrix as:

J =

∂fx1
∂k1

∂fx1
∂k2

∂fx1
∂k3

∂fx1
∂cx

· · · ∂fx1
∂T1

∂fx1
∂R1

∂fx1
∂T2

∂fx1
∂R2

· · ·
∂fy1
∂k1

∂fy1
∂k2

∂fy1
∂k3

∂fy1
∂cx

· · · ∂fy1
∂T1

∂fy1
∂R1

∂fy1
∂T2

∂fy1
∂R2

· · ·
∂fx2
∂k1

∂fx2
∂k2

∂fx2
∂k3

∂fx2
∂cx

· · · ∂fx2
∂T1

∂fx2
∂R1

∂fx2
∂T2

∂fx2
∂R2

· · ·
∂fy2
∂k1

∂fy2
∂k2

∂fy2
∂k3

∂fy2
∂cx

· · · ∂fy2
∂T1

∂fy2
∂R1

∂fy2
∂T2

∂fy2
∂R2

· · ·
...

...
...

...
. . .

...
...

...
...

...
∂fxn
∂k1

∂fxn
∂k2

∂fxn
∂k3

∂fxn
∂cx

· · · ∂fxn
∂T1

∂fxn
∂R1

∂fxn
∂T2

∂fxn
∂R2

· · ·
∂fyn
∂k1

∂fyn
∂k2

∂fyn
∂k3

∂fyn
∂cx

· · · ∂fyn
∂T1

∂fyn
∂R1

∂fyn
∂T2

∂fyn
∂R2

· · ·

(2.20)

In the Jacobian matrix, only a fraction of parameters are shown, missing pa-
rameters are intrinsic parameters and extrinsic parameters of all observations.
The number of columns is equal to the number of intrinsic and extrinsic param-
eters of the camera and the number of rows is equal to the number of points of
all observations.

Partial derivatives can be obtained analytically, but in this project, only
numerical solution is used. The general expression for calculating numerical
partial derivative can be expressed as:

∂f

∂xn
≈ f(x1, x2, ...xn + ε, xn+1, ...xm)− f(x1, x2, ...xn − ε, xn+1, ...xm)

2ε
(2.21)

The Jacobian matrix 2.20 is calculated and β parameters adjusted accroding
to partial derivatives in every iteration until determination criteria is met.

2.4.2 Covariance Matrix

As we have Jacobian matrix we can easily calculate covariance matrix as
follows:

K = (JTJ)−1 (2.22)

The covariance matrix is a matrix whos elements at i, j positions determine
covariance between elements i, j. The variance of β parameters is placed on
a diagonal of the covariance matrix. These values are important for further
evaluation of the algorithms.

2.4.3 Correlation Matrix

Correlation mostly explains how much is a pair of variables linearly related.
It can be expressed through covariance matrix (K) as follows:

11

N = diagonal(K)1/2 (2.23)

C = NKN (2.24)

Further, in the project, it will be extensively used to describe the correlation
between two parameters of the camera model. In this project, the goal is to de-
crease correlation as it is usually a sign of inaccurately determined parameters.

12

Chapter 3

Simulation

Obtaining measurements from real-world is not reliable, therefore it may lead
to wrong assumptions. However, simulation provides controllable environments
and completely accurate values. In this project, calibration algorithms are firstly
evaluated with simulated parameters. For this purpose, visualisation of the
parameters (Section 3.1) and building blocks for generating different testing
environments (Section 3.2) are developed.

3.1 Visualisation

In the first stage of simulation, a simple visualisation is created. Based on
given translations (T) and rotations (R) of a camera in respect to the world, it
draws 3D camera coordinate system (see Fig. 3.1).

13

Figure 3.1: An example of 3D visualisation of cameras and points

Position of the camera in the world coordinate system is equal to −T , but
the coordinate system of the cameras is determined as:

Xcx =

1
0
0

RT − T (3.1)

Xcy =

0
1
0

RT − T (3.2)

Xcz =

0
0
1

RT − T (3.3)

Camera # Tx Ty Tz Rω Rφ Rκ
1 -9.5 -5.7 4 0.1 -0.2 -0.8
2 -4 -6 3 0.1 -0.1 0.3
3 -1 -1 3 0.0 0.0 0.1
4 0 -2 3 0.0 -0.1 0.1

Table 3.1: Rotation and translations of the cameras in respect to world in Fig.
3.1

14

In Fig. 3.1 4 cameras are placed in arbitrary positions (check Table 3.1)
with arbitrary rotations. The only constraint was that the cameras are pointed
to the points and that all points can be projected in the camera frame. Even
though we needed to manually determine rotations and translations of cameras
it helped us to visually verify our extrinsic parameters.

3.2 Building Blocks for Creating Layouts

In order to automatically generate and test different constellations in which
all cameras are pointed at the given points, software building blocks are cre-
ated. The purpose of those building blocks is to automatically find the optimal
position of cameras with respect to points. In this case, ”optimal” refers to
obtaining calibration parameters that are not highly correlated and generate
small residuals.

First we define a function fR(ω, φ, κ) which creates rotation matrix out of
rotations around x axis (ω), y axis (φ) and z axis (κ):

fR(ω, φ, κ) =

1 0 0
0 cos(ω) −sin(ω)
0 sin(ω) cos(ω)

 cos(φ) 0 sin(φ)
0 1 0

−sin(φ) 0 cos(φ)

cos(κ) −sin(κ) 0
sin(κ) cos(κ) 0

0 0 1

(3.4)

In the rest of the text this notation (ω), (φ) and (κ) will be used to create
rotation matrices. Using just explained fR(ω, φ, κ) function we can determine
translation of cameras:

T =

0
0
d

 fR(0, α, γi) (3.5)

This will determine locations of N cameras in a circle around given origin
O. Number of cameras N depends on difference of two successive angles γ:

N =
⌊ 2π

γi+1 − γi

⌋
(3.6)

Angle α is a slope of between camera position, origin O and world plane where
the given points are located. And, d is a distance between a camera and the
origin O.

Next, the rotation of the camera has to be determined. First, we determine
xc, yc and zc one vectors that describe camera’s coordinate system as following:

~zc =
T

||T ||
(3.7)

~xc =

(cos(θ) −sin(θ)
sin(θ) cos(θ)

)
∗
(

0
1

)
0

 (3.8)

15

~yc = ~xc × ~zc (3.9)

where angle θ is rotation of the camera around the camera’s z axis.
Then, we can construct rotation matrix (R) as follows:

R =

~x0 ~y0 ~z0
~x1 ~y1 ~z1
~x2 ~y2 ~z2

 (3.10)

Finally, we have a rotation matrix and we Euler angles can be extracted.
For this purpose rotation matrix factorisation function is needed (f−1

R) [4]:

f−1
R (R) =

R1,3 < 1 ∧R1,3 > −1

atan(
−R2,3

R3,3
)

asin(R13)

atan(
−R1,2

R1,1
)

R1,3 < 1 ∧R1,3 = −1

−atan(
R2,1

R2,2
)

−π/2
0

R1,3 = 1

−atan(
R2,1

R2,2
)

π/2

0

(3.11)

Therefore, Euler angles in ω, φ, κ notation are obtained as:ωφ
κ

 = f−1
R (R) (3.12)

Obtained rotation angles and translations can be plugged into the visuali-
sation (explained in the previous section, Section 3.1) in order to visualise the
layout (see Fig. 3.2).

cameras d α γi+1 − γi # plains plain size
7 5 π/6 0.9 2 6× 6

Table 3.2: Required parameters for generating layout in Fig. 3.2

16

Figure 3.2: Example of layout with 7 cameras pointed towards two plains of
points

This process will be very helpful for the experiments described in the fol-
lowing chapters. It allows automatic generation of layouts with an arbitrary
number of cameras and configurable rotations (R) and translations (T).

17

Chapter 4

Calibration

In this chapter process of the camera, calibration will be explained. Firstly,
we have to obtain a data set of points in the real world and the points projected
on the image plane. Method used for the obtaining data set is explained the
first section (Section 4.1). The obtained data set is then used for calibration
of two cameras independently (Section 4.1). After the extrinsic and intrinsic
parameters are estimated the parameters are used to calibrate rotation between
dual cameras (Section 4.3). The software required for calibration is then packed
into a reusable module (Section 4.4).

4.1 Chessboard Corner Extraction

One of the most popular ways to estimate the position of projected points
from real-world to the image plane is by using chessboard [16]. Many scientific
contributions are made in this area [6, 14] and many open-source robust tools for
corner extraction are published [13]. Those were the main reasons for choosing
this method.

18

Figure 4.1: Example of extracted corners

In Fig. 4.1 an example of extracted corners is given. Extracted corners are
shown as red dots. The chessboards are labelled with coloured squares, so we
can keep track of the chessboard orientation. It is important to keep the order
of the corners of all images, so we can match the points later in the optimisation.
The first corner on all images is located next to the red square and the following
corner is a neighbouring corner located on the same side as the green square.
Therefore, the corners are ordered from the red square towards the green square
until the end of the chessboard is reached. The sequence is continued again from
the red square towards the green square until all corners are found.

4.1.1 Semi-automatic Tool for Highly Distorted Images

Our initial chessboard was 6 × 9 and OpenCV was detecting the corners
very accurate. However, as we introduced chessboard with 19 × 19 corners
and started taking highly distorted images of the chessboards, OpenCV wasn’t
effective anymore. Therefore, a semi-automatic tool for extracting corners from
highly distorted images is developed (Fig. 4.2).

19

Figure 4.2: Screenshot of the tool for corner extraction

The tool has an intuitive, easy-to-use, user interface. It is semi-automatic
which means it can automatically find corners but it still needs to be guided.
The tool helped us to extract corners from many highly distorted images.

4.2 Single Camera Calibration

After data points (xobserved) are collected with chessboard corner extraction
method enough data for calibration is collected. Fisheye camera models (Section
2.3) and non-linear least squares (Section 2.4) are utilised for an implementation
of the camera calibration process. In this section, the camera calibration process
will be described from an implementation point of view.

4.2.1 Initial Parameters

Algorithms that implement non-linear least squares optimisation are greedy
and often converge to a local minimum. Therefore, it is important to prop-
erly determine the initial parameters. In our experiments, we were manually
determined initial parameters based on observations in the real world. This
approach was good enough for our use-case, but more automatic techniques are
also available.

4.2.2 Non-linear Least Square Optimisation

After initial parameters are determined, we can proceed with non-linear
least square optimisation. As described in Section 2.4.1 Jacobian matrix is
constructed. In this section optimisation with Pix4D camera model (Section
2.3.2) is used.

20

Number of unknown intrinsic parameters for Pix4D camera model is 9 -
k1, k2, k3, fx, fy, D,E, cx, cy. Number of unknown extrinsic parameters depends
on number of observations, for each observation translation (Ti) and rotation
(Ri) have to be estimated. Therefore, number of extrinsic parameters is equal
to 6 ×M where M is number of observations. Jacobian matrix size for Pix4D
camera model and our chessboard (19 × 19 corners) is equal to (M19 ∗ 19) ×
(9 + 6M).

To solve nonlinear least-squares problem scipy.optimize.least squares func-
tion from SciPy is applied. The function is searching for optimal intrinsic and
extrinsic camera parameters until at least one of the determination conditions
is met. In our experiments terminations conditions are:

• Maximal number of iterations of 100 is reached.

• Cost function reached value less than 1−8.

• Independent variables change is less than 1−8.

4.2.3 Performance Optimisation

In our experiments, non-linear least square optimisation needed a lot of time
to converge to the solution. Therefore, we applied a few techniques to decrease
execution time.

Jacobian Matrix Sparsity

We discovered that calculating derivatives takes a lot of processing time.
For each partial derivative in Jacobian matrix projection function fp has to be
called twice (see Equation 2.21). One of the solutions to reduce the number of fp
calls is to exploit Jacobian matrix sparsity. Partial derivatives in the Jacobian
matrix that correspond to Ri ∧ Ti where i 6= j of observation j are equal to 0.
Since we are aware of it we can construct a Jacobian matrix as in Table 4.1.

21

Img
Points
Params

q1 q2 q3 F Xc R1 T1 R2 T2 R3 T3 ...

#1

P1 X X X X X
P2 X X X X X
P3 X X X X X
... X X X X X

#2

P1 X X X X X
P2 X X X X X
P3 X X X X X
... X X X X X

#3

P1 X X X X X
P2 X X X X X
P3 X X X X X
... X X X X X

Table 4.1: Jacobian Matrix Sparsity

In Table 4.1 cells with X are partial derivatives for which we know the
result is 0. Thus, the number of functional calls fp is much smaller especially if
calibration uses a lot of images.

Nonlinear Least-Squares Algorithm

Multiple algorithms that implement nonlinear least-squares optimisation are
tested, but the best results are obtained with LSMR algorithm [5]. The algo-
rithm is optimised for sparse and large Jacobian matrices which makes it suitable
for our use-case.

Single Rotation Matrix per Image

For each point, a rotation matrix is calculated. This is identified as an
additional bottleneck since is called many times. Therefore rotation matrix is
calculated once per each image and saved in memory. It enables the algorithm
to run even faster.

Additional Optimisation Techniques

Additional speed can be gained by calculating Jacobian analytically. This
would reduce the number of fp calls and the results would be more accurate.
However, it would make the software less general since analytical solutions
should be calculated after each change in the camera model. Nonetheless, the
algorithms are implemented in Python which is slow compared to languages
that can be compiled ahead-of-time.

22

4.3 Dual Camera Calibration

As mentioned before, Ricoh Theta V has two cameras. The important part of
the project is develop a technique for determining rotation between two cameras.
The process of acquiring data for dual camera calibration is shown in Fig. 4.3a.

(a) Process of dual camera calibration (b) Actual chessboards created for cali-
bration

In Fig. 4.3a two chessboards are positioned in parallel (as parallel as possi-
ble) to each other. In order to obtain rotation between dual cameras, multiple
images are taken between two chessboards. For each image, from each camera,
rotations in respect to a world frame (Ri) are determined as explained in Section
4.2. Those rotations are later used to express rotation between two cameras (see
Fig. 4.4).

Figure 4.4: Rotation between two cameras

23

In Fig. 4.4 simplified 2D view of camera rotation is shown. Based on known
rotations Rc1w1 and Rc2w2 for each image and partially know rotation Rw1

w2 we
should be able to determine Rc2c1. Our goal is to minimise ∆R of all images:

∆R = Rc1w1R
c2
c1(Rw2

c2)T (Rw1
w2) (4.1)

4.3.1 Initial Parameters

Just like for single image calibration, bad initial parameters may lead to
completely wrong results. Therefore, initial parameters are again determined
by analysing how objects are placed in the real world. An example of the initial
parameters used in our calibration:ωφ

κ

c2

c1

=

0
π
0

 (4.2)

ωφ
κ

w2

w1

=

0
π
0

 (4.3)

4.3.2 Non-linear Least Square Optimisation

Since this is again optimisation problem we can construct Jacobian matrix
as:

J =

∂frR1

∂ωc1c2

∂frR1

∂φc1c2

∂frR1

∂κc1c2

∂frR1

∂ωw1w2

∂frR1

∂φw1w2

∂frR1

∂κw1w2
∂frT1

∂ωc1c2

∂frT1

∂φc1c2

∂frT1

∂κc1c2

∂frT1

∂ωw1w2

∂frT1

∂φw1w2

∂frT1

∂κw1w2
∂frR2

∂ωc1c2

∂frR2

∂φc1c2

∂frR1

∂κc1c2

∂frR2

∂ωw1w2

∂frR2

∂φw1w2

∂frR2

∂κw1w2
∂frT2

∂ωc1c2

∂frT2

∂φc1c2

∂frT2

∂κc1c2

∂frT2

∂ωw1w2

∂frT2

∂φw1w2

∂frT2

∂κw1w2
...

...
...

...
...

...
∂frRm
∂ωc1c2

∂frRm
∂φc1c2

∂frRm
∂κc1c2

∂frRm
∂ωw1w2

∂frRm
∂φw1w2

∂frRm
∂κw1w2

∂frTm
∂ωc1c2

∂frTm
∂φc1c2

∂frTm
∂κc1c2

∂frTm
∂ωw1w2

∂frTm
∂φw1w2

∂frTm
∂κw1w2

(4.4)

Just like for a single camera calibration we use scipy.optimize.least squares
function from SciPy to find the minimum. However, the estimated parame-
ters are highly correlated (see Chapter 5) and additional techniques had to be
applied.

24

Priors

By adding priors we are able to increase certainty to initial values of some
parameters. Since the chessboards are mostly parallel we can increase certainty
of rotation between two worlds (Rw1

w2, see Fig. 4.4). Therefore:

λf−1
R (Rw1

w2(R̃w1
w2)T) = 0 (4.5)

where λ is a coefficient which describes magnitude of certainty of Rw1
w2. With

this technique, correlation is significantly decreased.

4.4 Calibration Software Module

All functions required for visualisation, optimisation, models and layout gen-
eration are packaged into a Python module and can be reused. The structure
of the Python package is shown in Fig. 4.5.

25

topocalib

layout.py Building blocks for generating layouts

generate layout() Generates layout

show layout() Shows layout

optimiser.py Optimisation methods for calibration

optimise pix4d() Calibration using Pix4D camera model

optimise() Calibration using OpenCV camera model

visualise.py Visualisation of calibration matrix, residuals, histograms...

show correlation matrix() Displays correlation matrix

show residuals() Displays residuals and histograml

model.py Common functions for all models

get rotation() Converts ω, φ, κ to rotation matrix

get angles() Converts rotation matrix to ω, φ, κ

model cv.py Implements OpenCV camera model

generate projections() Projects points to the image plane

model pix4d.py Implements Pix4D camera model

generate projections() Projects points to the image plane

Figure 4.5: The most important functions in the Python module

The Python module is then used in Jupyter Lab to verify, compare and
visualise the calibration process.

26

Chapter 5

Results

The projected is done in 3 parts. The first goal was to find optimal con-
stellation for camera calibration. This process is described in Section 3.2 and
results will be shown in Section 5.1. Afterwards, the results obtained with the
calibration of a single camera will be shown in Section 5.2. Finally, the results
for dual camera calibration will be described in Section 5.3.

5.1 Optimal Calibration Layout

In this process, we wanted to simulate different calibration approaches in
order to get accurate camera parameters. The main goals were to reduce the
correlation between parameters and to reduce residuals. The reason for those
experiments is to determine the best technique for acquiring real data. For that
purpose the following parameters are alternated:

• Distance d (see Equation 3.5) in range of 2 — 15.

• Angle α (see Equation 3.5) in range of π
14 — π

4 radians.

• Different plain of points setup, 2× 6× 6 and 1× 8× 9.

Note that d is unitless, which means we can scale distances as far as other
distances are also proportionally scaled.

5.1.1 Distance between cameras and origin O

In this experiment parameter d is changed and the correlation matrix and
histogram of residuals are observed.

27

(a) Correlation matrix of intrinsic param-
eters

(b) Histogram of residuals

Figure 5.1: Results obtained with a layout with the following configuration
α = π

6 , d = 8, camera positions = 6, number of plains = 2, size of plains = 6×6

(a) Correlation matrix of intrinsic param-
eters

(b) Histogram of residuals

Figure 5.2: Results obtained with a layout with the following configuration
α = π

6 , d = 14, camera positions = 6, number of plains = 2, size of plains =
6× 6

In Fig. 5.1a and Fig. 5.2a are shown correlation matrices for which d is
equal to 8 and 14 respectively. Dark colour represents parameters that are
not correlated and opposite for correlated parameters. From both correlation
matrices we conclude that D and E are correlated, also fx, fy, k1, k2 and k3 are
correlated to each other. However, for d = 8 parameters fx and fy are slightly

28

less correlated than for d = 14. Since we are looking for solutions that are less
correlated we will choose d = 8. Also, another important measurement is a
histogram of residuals, and the residuals are generally smaller for d = 8 which
probably means d = 8 is a more appropriate distance.

5.1.2 Different values of angle α

Again, we want to see the effect of angle α on correlation matrix and resid-
uals.

(a) Correlation matrix of intrinsic param-
eters

(b) Histogram of residuals

Figure 5.3: Results obtained with a layout with the following configuration
α = π

4 , d = 8, camera positions = 6, number of plains = 2, size of plains = 6×6

In the Fig. 5.3 angle α is increased and it caused bigger correlation between
fx and fy even though a distance d is still equal to 8. The big angle α has
negative effect on residuals as well. In experiments with smaller angles (≤ α)
correlation is not increased.

5.1.3 Different locations of points

In this experiment we wanted to investigate if it is better to have m points
in two levels or m points in a single level (bigger area).

29

(a) Correlation matrix of intrinsic param-
eters

(b) Histogram of residuals

Figure 5.4: Results obtained with a layout with the following configuration
α = π

6 , d = 8, camera positions = 6, number of plains = 1, size of plains
= 8 × 9

(a) Correlation matrix of intrinsic param-
eters

(b) Histogram of residuals

Figure 5.5: Results obtained with a layout with the following configuration
α = π

6 , d = 8, camera positions = 6, number of plains = 2, size of plains
= 6 × 6

Based on correlation in Fig. 5.4a and Fig. 5.5a bigger definitely has a
better effect on correlation matrix. Even though number of points is about the
same points spread across wider are more appropriate for the fisheye camera
calibration.

30

5.1.4 Gaussian noise

A few more experiments is performed with Gaussian noise. Gaussian noise
is added to the cameras translations (range 0.1 — 10), points positions (range
0.1 — 10) and rotations of the cameras (range 0.1 — 0.5). Neither of those
changes haven’t had significant influence on correlation or residuals.

5.2 Intrinsic and Extrinsic Parameters of Single
Camera

Here, results of a single fisheye camera calibration will be shown and anal-
ysed. For the calibration of the cameras Pix4D model is used, but parameters
fy, D and E are disabled since those parameters were highly correlated.

(a) Observed and estimated values shown
on the same picture

(b) Histogram of residuals

Figure 5.6: A sample of the residuals of the left camera (left lens of RICOH-T
camera)

(a) Observed and estimated values shown
on the same picture

(b) Histogram of residuals

Figure 5.7: A sample of the residuals of the right camera (right lens of RICOH-T
camera)

31

In Fig. 5.6a and 5.7 are shown residuals of left and right lens respectively.
In the figures only a single sample per camera is shown, but the residuals of the
other images are very similar. Residuals are mostly around 1px with a very few
outliers.

(a) Correlation of the intrinsic parame-
ters of the left image

(b) Correlation of the intrinsic parame-
ters of the right image

Figure 5.8: Correlation matrices

Correlation matrices the left and right cameras show high correlation be-
tween polynomial coefficients. Also, slightly less correlation is present for fx
and fy. Similarly, in Section 5.1 we were able to reduce the correlation (of fx
and fy) but it was still present.

In addition, we can create a correlation matrix for extrinsic parameters as
well (see Fig. 5.9).

32

Figure 5.9: Correlation matrix of intrinsic and some extrinsic parameters

Obtained calibration matrices in this experiment are:

Kleft =

1333.73277 0 1443.87723
0 1333.73277 1443.38526
0 0 1

 (5.1)

Dleft =

−0.08045513
0.14854105
−0.07786538

 (5.2)

Kright =

1361.56688 0 1440.86097
0 1361.56688 1443.30730
0 0 1

 (5.3)

33

Dright =

−0.02956731
0.03790681
−0.05503708

 (5.4)

After calibration done, extrinsic parameters are determine we are able to
reconstruct positions and rotations of the cameras (see Fig. 5.10).

Figure 5.10: Position of cameras based on estimated extrinsic parameters

5.3 Dual Camera Calibration

Finally, since rotations (Ri) of the cameras in respect to the worlds are
available it is possible to determine rotation between cameras (Rc2c1, see Equation
4.1).

34

(a) Correlation matrix for λ = 1 (b) Correlation matrix for λ = 10

Figure 5.11: Correlation matrices for different values of λ

Unfortunately, as already mentioned in Section 4.3.2 rotation between world
and rotation between cameras are highly correlated (see Fig. 5.11a). However,
after λ is increased (e.g. to 10) correlations are decreased (see Fig. 5.11b).

With λ = 10 results shown in Equation 5.5 are obtained.
ωc2c1
φc2c1
κc2c1
ωw2
w1

φw2
w1

κw2
w1

 =

0.0424
3.1551
0.0062

0
3.1416
0.0001

 (5.5)

After further analysis, it is discovered that a variance of rotation angles (of
Rc2c1) is quite high. This shows the uncertainty of the estimated rotation.

var(

ωc2c1
φc2c1
κc2c1
ωw2
w1

φw2
w1

κw2
w1

)−0.5 =

0.37113658
0.35845027
0.36354734
0.09974951
0.09915489
0.09932535

 (5.6)

However, the variance can be decreased by increasing value of λ and physi-
cally putting two chessboards more parallel to each other.

35

Chapter 6

Conclusion

This project greatly helped me to understand photogrammetry and more-
over, to understand it’s importance. With this project, I understood the process
of image creation and how to model and estimate the parameters of a camera. I
believe this will be important for robotics projects in the future, especially the
process of determining the extrinsic camera parameters.

The implementation is done in multiple stages, simulation, single camera
calibration, dual camera calibration and in the end everything with real-data.
This approach allowed me to slowly meet the problems and learn techniques to
solve them.

Building blocks for layout generation are developed and optimal layouts
are discovered. Many layouts are explored, but there is an opportunity for
exploring more parameters. This supposed to be relatively easy to accomplish
since building blocks are ready. This part helped me to get a better intuition
on how to create a good data set for camera calibration.

Calibration of the independent fisheye cameras is done. Unfortunately, only
10 observations are used for the calibration since no efficient automatic corner
extraction algorithm is found for our use-case. Less correlated parameters are
possible to obtain by using more observations. This should be the first next
step for the project continuation.

Rotation between the two cameras is also calculated. However, the variance
is big indicates that the obtained results are not accurate enough. The more
accurate result could be calculated if prior knowledge of rotation between chess-
boards is known at higher certainty. In addition, another way to improve the
quality of the results would be by obtaining more data points.

36

Bibliography

[1] S. Aghayari et al. “GEOMETRIC CALIBRATION OF FULL SPHER-
ICAL PANORAMIC RICOH-THETA CAMERA”. en. In: ISPRS An-
nals of Photogrammetry, Remote Sensing and Spatial Information Sci-
ences IV-1/W1 (May 2017), pp. 237–245. issn: 2194-9050. doi: 10.5194/
isprs-annals-IV-1-W1-237-2017. url: http://www.isprs-ann-
photogramm-remote-sens-spatial-inf-sci.net/IV-1-W1/237/2017/

(visited on 02/24/2019).

[2] L. Barazzetti, M. Previtali, and F. Roncoroni. “CAN WE USE LOW-
COST 360 DEGREE CAMERAS TO CREATE ACCURATE 3D MOD-
ELS?” en. In: ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences XLII-2 (May 2018),
pp. 69–75. issn: 2194-9034. doi: 10.5194/isprs-archives-XLII-2-
69-2018. url: https://www.int-arch-photogramm-remote-sens-
spatial-inf-sci.net/XLII-2/69/2018/ (visited on 05/21/2019).

[3] Mariana Batista Campos et al. “Geometric model and assessment of a
dual-fisheye imaging system”. en. In: The Photogrammetric Record 33.162
(2018), pp. 243–263. issn: 1477-9730. doi: 10.1111/phor.12240. url:
https://onlinelibrary.wiley.com/doi/abs/10.1111/phor.12240

(visited on 05/21/2019).

[4] David Eberly. “Euler Angle Formulas”. en. In: (), p. 18.

[5] David Fong and Michael Saunders. “LSMR: An iterative algorithm for
sparse least-squares problems”. In: International Journal of Heat and
Mass Transfer 55.9-10 (Apr. 2012). arXiv: 1006.0758, pp. 2636–2646. issn:
00179310. doi: 10.1016/j.ijheatmasstransfer.2011.12.029. url:
http://arxiv.org/abs/1006.0758 (visited on 06/05/2019).

[6] Andreas Geiger et al. “Automatic camera and range sensor calibration us-
ing a single shot”. en. In: 2012 IEEE International Conference on Robotics
and Automation. St Paul, MN, USA: IEEE, May 2012, pp. 3936–3943.
isbn: 978-1-4673-1405-3 978-1-4673-1403-9 978-1-4673-1578-4 978-1-4673-
1404-6. doi: 10.1109/ICRA.2012.6224570. url: http://ieeexplore.
ieee.org/document/6224570/ (visited on 05/26/2019).

37

[7] J. Heikkila and O. Silven. “A four-step camera calibration procedure with
implicit image correction”. en. In: Proceedings of IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition. San Juan,
Puerto Rico: IEEE Comput. Soc, 1997, pp. 1106–1112. isbn: 978-0-8186-
7822-6. doi: 10.1109/CVPR.1997.609468. url: http://ieeexplore.
ieee.org/document/609468/ (visited on 02/24/2019).

[8] T. Ho and M. Budagavi. “Dual-fisheye lens stitching for 360-degree imag-
ing”. In: 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). Mar. 2017, pp. 2172–2176. doi: 10.1109/
ICASSP.2017.7952541.

[9] How are the Internal and External Camera Parameters defined? en-US.
url: http://support.pix4d.com/hc/en-us/articles/202559089-
How-are-the-Internal-and-External-Camera-Parameters-defined-

(visited on 06/03/2019).

[10] J. Kannala and S.S. Brandt. “A generic camera model and calibration
method for conventional, wide-angle, and fish-eye lenses”. en. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 28.8 (Aug.
2006), pp. 1335–1340. issn: 0162-8828, 2160-9292. doi: 10.1109/TPAMI.
2006.153. url: http://ieeexplore.ieee.org/document/1642666/
(visited on 02/24/2019).

[11] OpenCV: Camera Calibration and 3D Reconstruction. url: https://

docs.opencv.org/4.1.0/d9/d0c/group__calib3d.html (visited on
06/04/2019).

[12] OpenCV: Fisheye camera model. url: https://docs.opencv.org/4.1.
0/db/d58/group__calib3d__fisheye.html (visited on 06/03/2019).

[13] OpenCV: Harris Corner Detection. url: https://docs.opencv.org/
4 . 1 . 0 / dc / d0d / tutorial _ py _ features _ harris . html (visited on
06/05/2019).

[14] M. Rufli, D. Scaramuzza, and R. Siegwart. “Automatic detection of checker-
boards on blurred and distorted images”. en. In: 2008 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. Nice: IEEE,
Sept. 2008, pp. 3121–3126. isbn: 978-1-4244-2057-5 978-1-4244-2058-2.
doi: 10.1109/IROS.2008.4650703. url: http://ieeexplore.ieee.
org/document/4650703/ (visited on 06/05/2019).

[15] J. Weng, P. Cohen, and M. Herniou. “Camera calibration with distortion
models and accuracy evaluation”. en. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 14.10 (Oct. 1992), pp. 965–980. issn:
01628828. doi: 10.1109/34.159901. url: http://ieeexplore.ieee.
org/document/159901/ (visited on 03/27/2019).

38

[16] Zhengyou Zhang. “A Flexible New Technique for Camera Calibration”. en-
US. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
22 (Dec. 2000). url: https://www.microsoft.com/en-us/research/
publication/a-flexible-new-technique-for-camera-calibration/

(visited on 06/05/2019).

39

