
SS 2020, MT-S, No. DISAL-MP44
Start: 17.02.2020

Finish: 14.08.2020

ROS2 Programming Interface for the
E-puck2 Robot

Darko Lukic

Professor: Alcherio Martinoli
Assistant: David Mansolino, Cyrill Baumann and Olivier Michel

2

Abstract

Robotics simulations have been proven to be a powerful tool for develop-
ing a robot controller as they are easy to set up, cheap, fast, and convenient
to use. However, the final objective is usually to deploy the controller on the
real robots or even to run the controller on an arbitrary robot. This thesis
presents a ROS2 driver for e-puck2 physical robots and a generalized ROS2
driver for Webots simulated robots. The ROS2 drivers expose a nearly iden-
tical ROS2 interface that allows a controller to interact in the same way with
the physical e-puck2 and the simulated robots without changes. Effectively,
it allows the controller developers a seamless transition between simulated
and physical e-puck2 robots or other simulated robots. The ROS2 drivers
are validated in multiple scenarios, like navigation and mapping. The re-
sults prove that researchers can quickly validate their ROS2 controllers on
the e-puck2 physical or simulated robot and other Webots simulated robots.

Keywords— robotics, simulation, ROS, ROS2, e-puck2, Webots

1

Acknowledgments

I am incredibly grateful to all fantastic people from Cyberbotics and Dis-
tributed Intelligent Systems and Algorithms Laboratory (DISAL) as this
project would not be possible without their help.

Therefore, I would like to thank David Mansolino, my assistant from
Cyberbotics, for all time he put in reviewing my code, to all valuable sug-
gestions and comments, and quick responses to my problems. I learned a
lot of practical skills from him. Nevertheless, I would like to thank Cyrill
Baumann, my assistant from DISAL, for his patience, plenty of advice, and
efforts to structure the project.

I want to thank Olivier Michel from Cyberbotics for his general support,
and especially for his critical problem-solving suggestions. I would like to
sincerely thank my supervisor, professor Alcherio Martinoli, from DISAL,
for the sincere and valuable encouragement extended to me.

Finally, I thank my family, my friends, and Jelena Banjac for unceasing
encouragement, support, and attention.

2

3

Contents

1 Introduction 11
1.1 Problem Statement . 11
1.2 Project Objective . 12
1.3 Document Structure . 13

2 Background and Related Work 15
2.1 ROS . 15

2.1.1 ROS Messages . 18
2.1.2 ROS Distributions . 19

2.2 Robotics Platforms . 20
2.2.1 E-puck2 . 20
2.2.2 Khepera IV . 22

2.3 Webots . 23
2.4 Related Work . 24

2.4.1 ROS Support for E-puck2 24
2.4.2 ROS Support in Webots 25

3 E-puck2 Simulation and ROS2 Interface 27
3.1 Introduction . 27
3.2 Webots within ROS2 . 28
3.3 Covered Sensors and Actuators 29

3.3.1 Differential Drive . 30
3.3.2 Distance Sensors . 34
3.3.3 Light Sensors . 35
3.3.4 Inertial Measurement Unit 36
3.3.5 Camera . 36
3.3.6 LEDs . 36
3.3.7 Final Interface . 37

4 ROS2 Interface for Physical E-puck2 38
4.1 Introduction . 38
4.2 ROS2 on Raspberry Pi OS . 39

4.2.1 ROS2 Cross-compilation 40

4

4.3 Programming Language . 41
4.4 Camera . 43

4.4.1 Camera Optimization 43
4.4.2 Differential Drive . 47

4.5 Software Quality Assurance 48
4.5.1 ROS2 Node Unit Tests 48
4.5.2 Code Quality Tests . 49
4.5.3 Continuous Integration 49

5 E-puck2 Demos 50
5.1 Visualizations . 50
5.2 Drive Calibration . 51
5.3 Custom Mapper Node . 52
5.4 Navigation Integration . 54

6 The Generalization of ROS2 Interface for Webots 56
6.1 Introduction . 56
6.2 Design . 57
6.3 ROS2 Transformations . 59

6.3.1 Transforms from URDF 60
6.4 ROS2 Wrapped Devices . 65

6.4.1 Differential Drive . 66
6.4.2 Range . 66

7 Results and Interpretation 68
7.1 Comparison of Physical and Simulated E-puck2 68

7.1.1 ROS2 Interface Endpoints Comparison 68
7.1.2 Camera Performance Comparison 68
7.1.3 Performance Comparison in Mapping 72
7.1.4 Performance Comparison in Navigation 74

7.2 ROS2 Interface for E-puck2 vs Khepera IV 75
7.2.1 Performance Comparison in Mapping 76
7.2.2 Performance Comparison in Navigation 77

7.3 Benefits of Generalized ROS2 Interface for Webots 78
7.3.1 Khepera IV Driver Analysis 78
7.3.2 Going Beyond Khepera IV and E-puck2 79

8 Conclusion and Future Work 83

Bibliography 85

A Mapping Comparison 89

5

Acronyms

API Application Programming Interface

CI Continuous Integration

CPU Central Processing Unit

CSI Camera Serial Interface

DAC Digital-to-Analog Converter

DDS Data Distribution Service

DISAL Distributed Intelligent Systems and Algorithms Laboratory

DMA Direct Memory Access

DSP Digital Signal Processor

EPFL École Polytechnique Fédérale de Lausanne

FoV Field of View

FPGA Field-Programmable Gate Array

FPS Frames Per Second

FPU Floating-Point Unit

GPU Graphics Processing Unit

I2C Inter-Integrated Circuit

ID Identifier

IMU Inertial Measurement Unit

IoU Intersection over Union

JPEG Joint Photographic Experts Group

LED Light-Emitting Diode

LiDAR Light Detection And Ranging sensor

LTS Long-Term Support

MCU Microcontroller Unit

MIPS Million Instructions Per Second

MMAL Multi-Media Abstraction Layer

6

ODE Open Dynamics Engine

OpenMAX Open Media Acceleration

OS Operating System

PC Personal Computer

PCB Printed Circuit Board

QoS Quality of Service

RGB Red Green Blue

ROS Robotic Operating System

ROS1 Robotic Operating System1

ROS2 Robotic Operating System2

RTOS Real-time Operating System

SD card Secure Digital card

SLAM Simultaneous Localization And Mapping

SoC System On a Chip

TCP Transmission Control Protocol

TCPROS Transmission Control Protocol for Robotic Operating System

ToF Time of Flight

UDP User Datagram Protocol

UDPROS User Datagram Protocol for Robotic Operating System

URDF Unified Robot Description Format

USB Universal Serial Bus

V4L2 Video4Linux 2

VCHI VideoCore Host Interface

VCOS VideoCore Operating System

VRML Virtual Reality Modeling Language

X3D Extensible 3D Graphics

XML Extensible Markup Language

YUV Luminance-Bandwidth-Chrominance

7

List of Figures

1.1 A development workflow (in robotics) that has to be achieved
with the proposed solution . 12

2.1 ROS described through a picture, available at the official ROS
website . 15

2.2 General example of three nodes exchange messages through
two topics . 17

2.3 Timeline of Robotic Operating System1 (ROS1) and ROS2
distributions . 20

2.4 E-puck2 robot with list of main components 21
2.5 Pi-puck extension consist of two parts, Printed Circuit Board

(PCB) and Raspberry Pi Zero W [1] 22
2.6 Khepera IV robot [2] . 22
2.7 Webots robot simulator: e-puck2 robot on a table 23

3.1 User specific code, Application Programming Interface (API)
and simulation within Webots 28

3.2 Webots and ROS2 driver within the launch file 29
3.3 nav msgs/Odometry message type definition in ROS2 30
3.4 Robot in local frame [3] . 31
3.5 geometry msgs/TransformStamped message type definition

in ROS2 . 33
3.6 geometry msgs/Twist message type definition in ROS2 . . . 33
3.7 Distance sensors available on e-puck2 34
3.8 Virtual distance sensors are added to emulate Light Detection

And Ranging sensor (LiDAR), making the angle difference
between the rays constant (15◦) 35

4.1 Components utilized in ROS2 driver 38
4.2 ROS2 cross-compilation setup 41
4.3 Performance comparison of implementations in Python and

C++ . 42
4.4 Graphics Processing Unit (GPU) architecture [4] 44
4.5 Camera software architecture 45

8

4.6 Image flow within ROS2 application 46
4.7 Testing communication with the microcontroller 48

5.1 Typical visualization of e-puck2 in RViz2 51
5.2 Differential drive robot calibration process 52
5.3 Mapping results shown in RViz2 54
5.4 Architecture of the navigation2 package 55

6.1 Technique of creating ROS2 interface within Webots before
universal driver and launch file are introduced 57

6.2 Webots and ROS2 interface using the new universal driver . . 58
6.3 An example of coordinate frames visualized in RViz2 [5] . . . 59
6.4 Typical robot representation in URDF and in Webots of the

same model . 61
6.5 Approach used to handle URDF’s flat nature in object-oriented

architecture . 63
6.6 Typical URDF and Webots robot representation 64
6.7 Publishing ROS2 transforms using URDF and robot state -

publisher . 65
6.8 Procedure used to interpolate table 67

7.1 Comparison of Central Processing Unit (CPU) usage for two
transfer modes, raw Red Green Blue (RGB) and Joint Pho-
tographic Experts Group (JPEG) compressed on GPU 71

7.2 Webots map used for the mapping benchmark 72
7.3 Comparison of the ground truth map, map created by phys-

ical robot (real-world) and map created by simulated robot
(simulation) . 73

7.4 Error comparison of map obtained in simulation and real-world 74
7.5 Path chosen by the simulated (red) e-puck2 robot and paths

chosen by the physical (blue) e-puck2 robot 75
7.6 Map used to compare the behavior of e-puck2 and Khepera

IV with the same ROS2 controller 76
7.7 Map produced by Khepera IV (left) and e-puck2 (right) . . . 76
7.8 Navigation goal on the map 77
7.9 Path chosen by e-puck2 (red) and path chosen by Khepera

IV (blue) . 77
7.10 Coordinate frames generated by URDF exporter 78
7.11 Result of URDF exporter on TIAGo++ robot 80
7.12 Webots world used to verify TurtleBot3 Burger mapping and

navigation capabilities . 81
7.13 TurtleBot3 Burger mapping view in RViz2 81
7.14 TurtleBot3 Burger navigation view in RViz2 82

9

List of Tables

2.1 Relevant specifications of e-puck2 robot 21
2.2 Relevant specifications of Khepera IV robot 23
2.3 Comparison of the proposed ROS drive with the existing im-

plementations . 25

3.1 Complete ROS2 interface for e-puck2 robot 37

4.1 List of the relevant sensors available on e-puck2 robot shown
in Figure 4.1 . 39

4.2 Message format sent from the Raspberry Pi Zero W to the
Microcontroller Unit (MCU) 39

4.3 Message format sent from the MCU to the Raspberry Pi Zero
W . 39

4.4 Comparison of different installation methods provided in the
scope of the project . 40

6.1 Comparison of different methods considered for publishing
ROS2 transforms . 60

6.2 Parameters available for differential drive module 66
6.3 Parameters available for distance sensor device 67

7.1 Frames Per Second (FPS) measurements in different configu-
rations within ROS2 environment 69

7.2 Intersection over Union (IoU) of ground truth and other maps 73
7.3 ROS2 API for Khepera IV robot 79

A.1 List of poses used to map the environment 89

10

Chapter 1 Introduction

This project’s motivation is to close the loop between the simulation and
the physical world in a robotics application. Furthermore, the motivation is
also to allow an effortless controller transfer to different simulated robots.
The project aims to utilize ROS2, the second iteration of a popular robotics
framework, to develop a standard interface for a range of different robots
including physical and simulated e-puck2 robots.

1.1 Problem Statement

Robotics simulations have been proven to be a powerful tool for research
and development as they are easy to set up, cheap, fast, and convenient to
use [6]. Usually, the final objective is to perform the experiments on real
robots. Therefore, the problem roboticists are facing is a transition from the
simulated to the physical world, also called bridging the reality gap. The
aim is to make this process simpler and faster, effectively minimizing this
gap. The solution should be easy to integrate into the simulation and not
cause a significant computational overhead for the physical robot.

Another challenge roboticists are facing is code reuse. In the world of
diverse hardware solutions for robots, it is hard to create a modular software
solution that can be reused on different robotics platforms. For example,
navigation, Simultaneous Localization And Mapping (SLAM), and localiza-
tion are only a few algorithms widely used in mobile robotics, and many
mobile robots could reuse that. The researchers need modular, reusable
software to share robot controllers among colleagues. Then, the researchers
can evaluate and compare the controller on different robots [7]. As for the
previous challenge, the solution must be easily integrated into the simula-
tion.

In order to demonstrate the flexibility of the proposed solution, it will
be implemented for the e-puck2 physical and simulated robot. The solution
also has to be scaled to the Khepera IV simulated robot and potentially
other simulated robots.

11

Darko Lukic: Introduction

1.2 Project Objective

As described in the previous section, two challenges in robotics have to be
tackled in this thesis. The first is closing the loop between the simulation
and the physical world, and the second is software reuse between different
robots.

From the software point of view, solving those problems can be addressed
by defining a common API for the physical and simulated robot. ROS is
often used as a meta-operating system for this purpose as the common API
can be defined in ROS. The newest version of ROS, ROS2, includes useful
improvements relevant to the project, and it is about to replace the old
version completely. Therefore, the proposed solution is based on develop-
ing ROS2 nodes that closely interact with the hardware and the Webots1

simulation - ROS2 driver. As a result, a user should have a development
workflow, as shown in Figure 1.1.

Development: None, monitoring on PC
Controller execution: Another robot
Robot type: Physical

Development: None, monitoring on PC
Controller execution: Robot
Robot type: Physical

Development: PC
Controller execution: PC
Robot type: Physical

Development: PC
Controller execution: PC
Robot type: Simulated

driver for
physical

robot

custom
controller

driver for
simulated

robot

custom
controller

driver for
physical

robot

custom
controller

driver for
physical

robot

custom
controller

A B

C D

Figure 1.1: A development workflow (in robotics) that has to be achieved
with the proposed solution. The circle represents a piece of software that
the user wants to develop to control the robot, and it is the same in each
scenario. The dashed arrows are transitions in the development workflow,
while the solid arrows represent a network protocol.

In Figure 1.1, the user develops a robot controller called custom con-

1Webots is a desktop application, developed at École Polytechnique Fédérale de Lau-
sanne (EPFL), used to simulate robots. It will be more closely introduced in the following
chapter.

12

Darko Lukic: Introduction

troller. From the user’s perspective, the controller is supposed to be the
same in each scenario. First, the user should start by developing the con-
troller on a PC and testing it in the simulation (scenario A). After the user
is satisfied with the robot’s behavior in simulation, the controller can still be
executed on the PC, but now it can control the physical robot (scenario B).
If the robot’s behavior is not desired, the user can improve the simulation
model and test it again in the simulation (scenario A), reducing the reality
gap. Once everything works as expected, the user should move the con-
troller to the robot (scenario C). Here, it is possible to, for example, hit the
computational limit of the on-board computer. In this case, the controller
should then be edited and tested in simulation again (scenario B), moving
back to the on-board computer once it is ready. Finally, the controller can
be shared with the other researchers to evaluate it on different robots or to
further improve it (scenario D).

The project has to be done in three phases. First, specific ROS2 nodes
for an e-puck2 simulated and physical robot have to be developed. Second,
examples that utilize the nodes have to be created. The purpose of this phase
is to evaluate the nodes and to give the users usage examples. Finally, in
the third phase, the specific ROS2 node for simulated e-puck2 robot has
to be generalized to support other robots, focusing on Khepera IV and
TurtleBot3 robots. The final software has to be peer-reviewed, united tested,
code quality tested, automated with CI2, user friendly, and well documented
with comprehensive tutorials.

1.3 Document Structure

The structure of the thesis roughly follows the phases described in the pre-
vious section. It should allow readers to skip information, but also to reduce
the chance of missing important details. Therefore, the project is presented
as follows:

• Chapter 2: Background and Related Work gives the theoretical
background on common concepts, and software and hardware tech-
nologies, utilized in the project. Also, it clarifies relations with relevant
projects.

• Chapter 3: E-puck2 Simulation and ROS2 Interface explains a
process used to create a ROS2 node that exposes access to simulated
the e-puck2 robot’s sensors and actuators through ROS2 interface.

2The CI automation has to be done with Industrial CI. This CI is created by ROS-
industrial, an organization committed to close a gap between research and industry by
bringing industry standards to ROS2.

13

Darko Lukic: Introduction

• Chapter 4: ROS2 Interface for Physical E-puck2 has a goal
to explain implementation of the same ROS2 interface for e-puck2
physical robot.

• Chapter 5: E-puck2 Demos shows tools, existing packages and
custom created controllers that utilize the e-puck2 ROS2 interface.

• Chapter 6: The Generalization of ROS2 Interface for Webots
gives implementation overview on generalized ROS2 driver for simu-
lated robots. It aims at creating universal ROS2 driver to support
e-puck2, Khepera IV, TurtleBot3 Burger and potentially the other
robots as well.

• Chapter 7: Results and Interpretation quantifies difference be-
tween the ROS2 driver for the simulated and the physical robot, dif-
ference between e-puck2 and Khepera IV ROS2 interfaces and it shows
simplification resulted by generalization described in the previous chap-
ter.

• Chapter 8: Conclusion and Future Work presents the project
summary, limitations, impact and potential improvements.

14

Chapter 2 Background and Re-
lated Work

This chapter has two purposes. First, to give a reader a theoretical back-
ground about the concepts and technologies needed for understanding the
project. Second, it shows the related work - how this project is different and
what improvements it brings in comparison to the existing solutions.

2.1 ROS

The initial founders of ROS define it as an open-source operating system
which, instead of process management and scheduling, provides a communi-
cation layer on top of the host operating systems of a heterogeneous compute
cluster [8].

Figure 2.1: ROS described through a picture, available at the official ROS
website

One also can say that ROS is a collection of tools, libraries, and conven-
tions that simplify developing a complex robot behavior. In one interview,
Roger Barga, leader of Amazon’s Web Service (AWS RoboMaker), empha-
sized the importance of ROS in robotics by saying “We think that ROS
is becoming the Linux for the robots of the future”1. Defining ROS in one
sentence is hard, but in further text, two crucial concepts of ROS will be
covered.

The first is the concept of a node. A task of the node is to perform
a computation. The nodes utilize a publisher-subscriber communication
model to exchange messages with each other. In that way, the nodes are

1Roger Barga is an interview by Ricardo Tellez (from The Construct) in ROS Develop-
ers podcast - https://www.theconstructsim.com/aws-robomaker-with-roger-barga/.

15

https://www.theconstructsim.com/aws-robomaker-with-roger-barga/

Darko Lukic: Background and Related Work

combined into a graph that can perform more complex tasks. There are a
few important characteristics of each node:

• The node can be implemented in various programming languages,
without affecting the other nodes. Being a programming language
agnostic allows developers to optimize the nodes for different behav-
iors. For example, if the node has to be efficient or interact closely
with the hardware, C programming language may be more suitable.
Otherwise, if fast prototyping is important, Python may be a better
fit. As a result, community nodes are implemented in a programming
language that fits best the node’s purpose.

• The nodes can be run on different computers. Each ROS node in-
cludes a mechanism to communicate locally or over the network with
the other nodes. A complex robotics system often includes multiple
powerful computers and dozens of MCUs or Field-Programmable Gate
Arrays (FPGAs) specialized for various tasks, and therefore, this ca-
pability of ROS nodes is significant. In this project, for example:

– MCU is used to execute real-time tasks, like motor control,

– on-board computer is used for heavy tasks, like perception,

– while workstation (PC) is used for data visualization, monitoring,
and debugging.

• The nodes can run on virtually any Operating System (OS). Since
ROS2, Linux, Mac, and Windows are officially supported. A stripped
version of ROS2, micro-ROS, runs even on NuttX, FreeRTOS, and
Zephyr, and the community has been porting to other OSs as well.

• Since ROS2, the nodes are fully distributed. It means that there is
no single message broker to orchestrate the communication. Being
distributed significantly increases robustness as there is no single point
of failure; if a node crashes the rest of the system will continue to
function.

In Figure 2.2, a graph of ROS nodes is given, representing the node
concepts given before.

16

Darko Lukic: Background and Related Work

Computer #2

Computer #1

ROS Node

#1
ROS Node

#2

ROS Node

#3

/topic_1/topic_2

Figure 2.2: General example of three nodes exchange messages through two
topics

The second important concept in ROS is the means of communication
between the nodes. Mostly, communication between nodes is done through
topics, but there other types of communication:

• Topics use publisher-subscriber communication model [9]. It means
that a node’s message will be received by all nodes that are subscribed
to the corresponding topic. Quality of Service (QoS) was important
to ROS team and therefore, the following QoS can be defined:

– history, keep last (keep only the last N messages) or keep all,

– reliability, best effort (may lose messages if the network is not
stable) or reliable (guarantees message delivery) and

– durability, transient local (nodes that got subscribed to a topic
will receive the last message even though the message is published
a long time before) or volatile (messages will not be preserved for
late joiners).

• Services are used to get a response from the other nodes. The concept
is very similar to functions with return values. A client node sends
a service request with data to a node that provides service, and after
the result is ready, the client node gets the response. A typical request
can be, “Is the motor turned on?” or “Retrieve the full map now”.

17

Darko Lukic: Background and Related Work

• Parameters allow nodes to be configured by the user or other nodes, on
startup or during run-time. The underlying implementation is based
on the previously explained services. It means the nodes can be con-
figured over the network.

• Actions are available in ROS core since ROS2, and they are similar to
the services. A difference is that the actions are optimized for requests
that generally take longer to execute and need continuous feedback. A
typical action can be, “Move the robot to the new position and while
doing it, keep sending me a position”.

The nodes and means of communication between the nodes, are two
core concepts of ROS around which all ROS tools are built. Depending on
the area of robotics, new concepts may also emerge, but those two are the
foundation of the ROS.

2.1.1 ROS Messages

One of the subobjectives of this master project is to provide ROS2 interface
that is as compatible as possible with the existing packages. That will allow
users to simply integrate existing ROS2 packages and significantly increase
their productivity. To achieve the objective, ROS2 defines a vast list of
existing message, service, and action types. In the scope of the project, only
message types will be further described.

Except for the standard types available in most programming languages,
such as bool, integer, float, and string, some messages are more specific to
the robotics such as odometry (for describing odometry data), twist (for
defining angular and linear velocity), and range (for data from distance
sensors). These messages are exchanged through the previously described
topics. Therefore, integrating a community ROS2 package is a matter of
launching (and sometimes configuring it), the package should automatically
start publishing and subscribing to the messages as common message types
are used.

There are a few groups of message types, some of which are:

• std msgs is a wrapper around primitive types such as Bool, Int32,
Float64, String, and Float64MultiArray. These message types are
usually used to compose more complex message types and in gen-
eral should be avoidable if there is more suitable type from the other
groups.

• geometry msgs contains geometry primitives. For example, Twist is
used to describe linear and angular velocity (usually used to control
robot’s velocity), rotations are described with Quaternion message
types, robot’s pose Pose (e.g. the navigation stack uses this message

18

Darko Lukic: Background and Related Work

type to describe the robot’s goal position and orientation) and Trans-

form to describe relative orientation and translation of two frames.

• nav msgs group contains message types used to interact with the nav-
igation stack and the related packages. It defines message types such
as OccupancyGrid that represent a map and Odometry that contains
odometry data.

• sensor msgs contains message types that are commonly used to de-
scribe data from sensor such as distance sensors (Range), LiDARs
(LaserScan), cameras (CameraInfo and Image), light sensors (Illuminance)
and similar.

There are many more message group types, but those are the most rel-
evant ones for this project.

2.1.2 ROS Distributions

ROS distributions are another vital aspect of the project. The newest ROS
distribution (as of the time of writing the thesis) is deliberately chosen. The
choice will be described later, but first, ROS versioning has to be described.

ROS team releases a new ROS distribution every six months, following
Ubuntu’s release cycle. Every two years, a new ROS Long-Term Support
(LTS) is released, a few weeks after Ubuntu’s LTS release, as ROS relies on
the latest Ubuntu LTS.

In December 2017, ROS2 is introduced, and since then ROS team has
been publishing ROS and ROS releases every six months. ROS2 should fully
replace the ROS1 once ROS2 mature2.

2Dirk Thomas, principle software engineer working on ROS core, wrote
about ROS future at ROS Discourse - https://discourse.ros.org/t/

planning-future-ros-1-distribution-s/6538. He stated ROS1 will be most probably
supported until 2025 and then it should be completely replaced by ROS2

19

https://discourse.ros.org/t/planning-future-ros-1-distribution-s/6538
https://discourse.ros.org/t/planning-future-ros-1-distribution-s/6538

Darko Lukic: Background and Related Work

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

ROS2 Eloquent Elusor (Ubuntu 18.04)

ROS2 Dashing Diademata (Ubuntu 18.04)

ROS2 Foxy Fitzroy (Ubuntu 20.04)

 ROS2 Future Distributions

ROS Kinetic Kame (Ubuntu 16.04)

ROS Melodic Morenia (Ubuntu 18.04)

ROS Noetic Ninjemys (Ubuntu 20.04)

Figure 2.3: Timeline of ROS1 and ROS2 distributions

In Figure 2.3, a few latest ROS distributions are shown. Note that they
all rely on Ubuntu LTS distributions and that ROS2 Foxy Fitzroy is the
first ROS2 distribution with three years of support.

In this project, the importance of ROS2 is recognized, and therefore it
is chosen instead of ROS1. Furthermore, the master project had started
before ROS2 Foxy Fitzroy was released, and therefore the initial code is
written for ROS2 Eloquent Elusor with a plan to adopt ROS2 Foxy Fitzroy.
Finally, the master project is compatible with ROS2 Eloquent Elusor and
ROS2 Foxy Fitzroy.

2.2 Robotics Platforms

The project’s main objective is to introduce ROS2 support for the e-puck2
physical and simulated robot, and other simulated robots while focusing on
Khepera IV. Therefore, those two robots are will be described in more detail.

2.2.1 E-puck2

E-puck2 is the second generation of the e-puck robot[10]. E-pucks are small
differential wheeled robots (e-puck and e-puck2 have the same footprint)
with a radius of 35mm. As a miniature robot, it is the perfect candidate
for education and multi-robot research. It is originally designed for micro-
engineering education by Michael Bonani and Francesco Mondada at EPFL.
The robot is open hardware, and the software is open-source.

20

Darko Lukic: Background and Related Work

Micro SD

IMU

Bluetooth & Wi-Fi

Infra-red sensors (x8)

Wheels with step motors

Programmer

4x LEDs & 4x RGB LEDs

ToF distance sensor

CMOS camera

Charging & communication

Li-Ion battery

IR receiverON/OFF

Mode selector

Figure 2.4: E-puck2 robot with list of main components

The robot is shown in Figure 2.4 and its main specifications are given in
Table. 2.1.

Size, weight 70mm diameter, 130g

MCU 32-bit STM32F407 @ 168 MHz (210 MIPS), DSP and FPU, DMA

Motors 2 stepper motors, 50:1 reduction gear and 20 steps per revolution

Max velocity 0.154m/s

Distance sensor 8 infra-red sensors (up to 0.06m) and one ToF (up to 2m)

Camera 640x480 at 15FPS

IMU 3D accelerometer, 3D gyro, 3D magnetometer

LEDs 4 red LEDs and 4 RGB LEDs

Table 2.1: Relevant specifications of e-puck2 robot

Pi-puck

E-puck2 robot allows extensions to be added providing different features
such as additional autonomy, ground sensors, or additional processing power.
The pi-puck extension, for example, consists of a Raspberry Pi Zero W and
adapter PCB, and interacts directly with on-board MCU and sensors [1].
Since Raspberry Pi Zero W is Linux base board, it can run ROS with full
Data Distribution Service (DDS) implementation.

21

Darko Lukic: Background and Related Work

Figure 2.5: Pi-puck extension consist of two parts, PCB and Raspberry Pi
Zero W [1]

In the project, Raspberry Pi Zero W allows us to run ROS2 nodes on
the robot and execute complex operations such as JPEG image compression
that otherwise would not be possible.

2.2.2 Khepera IV

Khepera IV is a similar robot to e-puck2, but is more prominent in size (with
a radius of 70mm), and has more powerful sensors and computational units
[2]. The robot is designed by K-Team3 to fit any indoor lab application.

Figure 2.6: Khepera IV robot [2]

The robot is shown in Figure 2.6 and its main specifications are given in
Table. 2.2.

3Official website of K-Team is available at https://www.k-team.com/.

22

https://www.k-team.com/

Darko Lukic: Background and Related Work

Size, weight 140mm diameter, 540g

Processor 800MHz ARM Cortex-A8 Processor and MCU

Motors 2 DC brushed motors with incremental encoders

Max velocity 0.8m/s

Distance sensor 8 infra-red (up to 0.25m) and 5 ultrasonic (up to 2m)

Camera 752x480 at 30FPS

IMU 3D accelerometer, 3D gyro

LEDs 3 RGB LEDs

Table 2.2: Relevant specifications of Khepera IV robot

2.3 Webots

Webots is an open-source robot simulator developed by Cyberbotics4, ini-
tially designed at EPFL. The simulator provides a development environment
to model, program, and simulate robots [6, 11, 12].

Figure 2.7: Webots robot simulator: e-puck2 robot on a table

The main Webots features are:

4Official website of Cyberbotics is available at https://cyberbotics.com/.

23

https://cyberbotics.com/

Darko Lukic: Background and Related Work

• Robot/world editor: The models are stored in VRML97 format, al-
lowing users to either change the document manually or through the
Webots user interface. The Webots world editor allows the users to
see changes in the world immediately. It is possible to include pre-
built models, and the users can choose among a substantial library of
models.

• Realistic simulation: The simulations produced in Webots are realis-
tic compared to the similar products. The physics simulation is based
on a modified version of Open Dynamics Engine (ODE). The mod-
els shipped with the Webots are visually very detailed, although still
optimized for high performance.

• Programming interface: An API for programming robots is officially
available in the most popular programming languages, C, C++, Python,
MATLAB, and Java, while community-contributed packages further
extend this list5. The API allows simple access to the sensors and
actuators available in the robots.

• Deterministic simulations: Webots guarantees a simulation to output
the same behavior every time it runs (the user can also choose non-
deterministic simulation). Although a non-deterministic simulation
is preferable before transferring to a real robot, deterministic simula-
tion is beneficial when doing initial algorithm tests. Additionally, this
feature can be exploited to simplify automated testing in CI.

Those are the main points that justify the usage of Webots over similar
products.

2.4 Related Work

The existing ROS support for the e-puck2 physical robot and Webots will
be analyzed. Drawbacks in current implementations of ROS support are the
motivation for this project; therefore, they will be explained in this section.

2.4.1 ROS Support for E-puck2

GCtronic, a company behind e-puck robots, has two types of ROS drivers
available. The first is made for e-puck robots without pi-puck extension6. In
that case, ROS driver runs on a workstation while communicating with the

5An example of API in Haskell programming language, created by the community, is
available at https://github.com/cyberbotics/HsWebots.

6ROS driver that doesn’t run on pi-puck extension is available at https://github.

com/gctronic/epuck_driver_cpp/tree/e-puck2.

24

https://github.com/cyberbotics/HsWebots
https://github.com/gctronic/epuck_driver_cpp/tree/e-puck2
https://github.com/gctronic/epuck_driver_cpp/tree/e-puck2

Darko Lukic: Background and Related Work

e-puck over Bluetooth. The second ROS driver implementation runs on pi-
puck extension7 and it is similar to the ROS driver we aim to develop. The
main drawbacks are that it is not available for ROS2, it is not unit tested
nor code quality tested, it does not include a camera driver, and there is no
comprehensive documentation.

GCtronic’s #1 GCtronic’s #2 Proposed solution

ROS2 support No No Yes

Communication Bluetooth UDPROS/TCPROS DDS

Camera 160x120@4 No 640x480@10

Battery autonomy Long Short Short

Unit tests No No Yes, with CI

Code quality tests No No Yes, with CI

Cross-compilation No No Yes, tools are given

Independent from PC No Yes Yes

Table 2.3: Comparison of the proposed ROS2 driver with the existing imple-
mentations (aspects in which the proposed solution is better are highlighted).

As showed in Table 2.3, the proposed solution offers better implementa-
tion in many aspects. The proposed solution’s main drawback is the battery
autonomy as the pi-puck extension requires a significant amount of power
(around 0.7 watts, it can vary depending on usage).

2.4.2 ROS Support in Webots

A major part of the master project is the improvement of ROS2 support
for Webots. Webots supports both, ROS1 and ROS2, but with certain
limitations.

Webots ROS1 implementation automatically exposes all Webots API
functions as ROS topics and services. Automatically exposing ROS API
sounds as a reasonable solution, but it is uncanny for the ROS ecosystem,
and therefore, much effort is required from users to adapt the exposed API
to fit other ROS packages. For example, if one wants to publish odometry
data, one needs to create a ROS node that subscribes to topics published
by encoders and then publishes the corresponding odometry and transform
messages. This work is time consuming, complex, and consumes unnecessary
processing power by republishing all the messages.

Therefore, Cyberbotics has taken another approach in ROS2 support.
Instead of creating ROS2 topics and services as done for ROS1 it provides
facilities to users to design and implement their own ROS2 interface using
Webots API functions. Creating a specific ROS2 driver simplifies usage,

7ROS driver that uses pi-puck extension is available at https://github.com/

gctronic/epuck_driver_cpp/tree/pi-puck.

25

https://github.com/gctronic/epuck_driver_cpp/tree/pi-puck
https://github.com/gctronic/epuck_driver_cpp/tree/pi-puck

Darko Lukic: Background and Related Work

but it is still time-consuming as the ROS2 driver has to be created for each
robot.

This project extends Webots’ support for ROS2 by adding modules that
can automatically create ROS2 interface, compatible with other ROS2 pack-
ages, based on a robot description. For the previously mentioned example,
in which odometry has to be published, the proposed improvement will al-
low automatic publishing of odometry and transform messages, including
support for ROS2 parameters and velocity control of the robots.

This improvement should allow users to integrate Webots simulations
faster in their ROS2 applications, and it should effectively lead to a greater
adoption of robot simulations among the ROS2 community that uses We-
bots.

26

Chapter 3 E-puck2 Simulation
and ROS2 Interface

As previously explained, one of the project’s objectives is to create a ROS2
interface for simulated e-puck2 robots. Even though creating ROS2 interface
for Webots robots is automated later in the project, specific ROS2 driver
for the e-puck2 in Webots is created first. For us, as developers, creating
the specific ROS2 driver was necessary to understand better building blocks
that can be generalized. To readers, this chapter will help better understand
improvements brought by generalization (see Chapter 6). It will also show
that some devices cannot be generalized, e.g., distance sensors cannot feed
the LaserScan topic.

3.1 Introduction

Before going to implementation details, it is important to understand the
concept of a controller in Webots and how it fits in ROS2 driver for Webots
simulated robots. The Webots controller controls actuators and reads data
from sensors available in a robot. The controller is a ”brain” of the robot;
it makes the robot move and senses the environment. It consists of two
parts, the Webots API, which communicates with the simulation and user-
defined code that uses Webots API to control the robot. The Webots API
communicates with the Webots simulation through pipes and shared mem-
ory, a type of inter-process communication [13]. Therefore, there are two
processes that run independently, Webots controller and Webots simulation
(see Figure 3.1).

27

Darko Lukic: E-puck2 Simulation and ROS2 Interface

Webots Controller

Webots API

User-specific Code

Webots Simulation

pipes + shared memory
(interprocess communication)

Figure 3.1: User specific code, API and simulation within Webots

In this chapter, a logic that performs translation from Webots API to
ROS2 API will be implemented as a Webots controller (block User-specific
Code in Figure 3.1). Therefore, a block Webots Controller from the figure
will be referenced as ROS2 driver in the further text.

3.2 Webots within ROS2

As the ROS2 driver is defined, we should clarify how the ROS2 driver
and Webots simulation can be launched within a ROS2 application. The
straightforward way to launch the ROS2 driver and Webots simulation is
the following:

• put ROS2 libraries to the environment variable PATH,

• start the Webots simulation,

• execute the ROS2 driver and

• start the rest of the ROS2 application (ROS2 nodes).

However, to better integrate Webots into ROS2, launch files1 are used.
The launch files in ROS2 allow user to execute multiple processes (often
ROS2 nodes) at once. The launch files are described with Python scripts,
and there are three important concepts:

1Launch files in scope of ROS2 are poorly documented.Good documentation to under-
stand the core concepts (although not completely accurate) can be found in ROS2 design
specification at https://design.ros2.org/articles/roslaunch.html. A superficial ex-
planation, hiding core concepts, on the usage of the launch files, is given in ROS2 tutorials
at https://index.ros.org/doc/ros2/Tutorials/Launch-system/.

28

https://design.ros2.org/articles/roslaunch.html
https://index.ros.org/doc/ros2/Tutorials/Launch-system/

Darko Lukic: E-puck2 Simulation and ROS2 Interface

• Actions: They represent an intention to do something, like start a
process (usually ROS2 nodes), set a parameter, or push a namespace.

• Substitutions: Define a transformable expression. It means that the
expression contains a placeholder that can be replaced. For example,
the substitution can be a path to a file in which filename is again a
substitution:
PathJoinSubstitution([package path, LaunchConfiguration(’world’)])

• Events: Actions can produce subscribable events. For example, when
a process is closed, it will emit an event on which we can close the
whole ROS2 application.

Using those three concepts a minimal launch file containing Webots and
ROS2 driver is created (see Figure 3.2).

ROS2 Launch File

Webots
(encapsulated as an action of type ExecuteProcess)

event OnProcessExit
exit the launch file

ROS2 Driver
(encapsulated as an action of type Node)

gui mode worldsubstitutions:

p
ip

es
(in

te
rp

ro
ce

ss
 c

om
m

u
n

ic
at

io
n

)

Figure 3.2: Webots and ROS2 driver within the launch file

It will start Webots with three substitutions, gui, mode and world which
are used to configure Webots. These substitutions are taken from arguments
(as LaunchConfiguration). Also it defines an action which will kill the
launch file if the user exit the simulation.

This whole implementation is later completely hidden from the user (in-
troduced in Chapter 6).

3.3 Covered Sensors and Actuators

In this section, the implementation of ROS2 driver for the simulated e-
puck2 robot is explained. Please note that only the first section (Section

29

Darko Lukic: E-puck2 Simulation and ROS2 Interface

3.3.1) will provide the comprehensive explanation of the respective topic.
The other sections will only briefly cover the implementation details as the
ROS2 support does not differ significantly from sensor to sensor.

3.3.1 Differential Drive

Using data from sensors such as wheel encoders, camera, or IMU, or fusing
them, one can estimate the change in robot’s position overtime [14, 15].
With the dead reckoning method, the change in position can be accumulated,
and, in that way, the robot’s position in the local frame (frame relative to
the robot’s start position) can be estimated [16, 17]. In ROS2, each sensor
used for odometry should publish messages of type nav msgs/Odometry, and
messages from different sensors later can be fused to increase accuracy.

In the scope of this project, only wheel encoders are used for odometry.
Even though the e-puck2 does not have encoders but step motors, we con-
trol steps precisely, and therefore, that information we can use to calculate
odometry.

nav msgs/Odometry

(std msgs/Header) header

(string) child frame id

(geometry msgs/PoseWithCovariance) pose

(geometry msgs/Pose) pose

(geometry msgs/Point) position

(geometry msgs/Quaternion) orientation

(float64[36]) covariance

(geometry msgs/TwistWithCovariance) twist

(geometry msgs/Twist) twist

(geometry msgs/Vector3) linear

(geometry msgs/Vector3) angular

(float64[36]) covariance

Figure 3.3: nav msgs/Odometry message type definition in ROS2

In Figure 3.3, odometry format proposed by ROS2 and used by the
community packages is given. It requires geometry msgs/Pose (position and
orientation) of the robot to be specified, as well as geometry msgs/Twist

(linear and angular velocity).
First we express velocity of left (vleft) and right (vright) wheel by multi-

plying wheel radius (R) with angular velocity:

vleft = R
γleft(n)− γleft(n− 1)

∆t

vright = R
γright(n)− γright(n− 1)

∆t

(3.1)

30

Darko Lukic: E-puck2 Simulation and ROS2 Interface

in which γleft(n) and γright(n) are angular positions of left and right wheel
respectively at the sample n.

For differential drive robots we can simply express linear (v) and angular
(ω) velocity as:

v =
vleft + vright

2

ω =
vright − vleft

L

(3.2)

where L is axle length (distance between the left and the right wheel). The
velocity of the robot in odometry frame is given by:ẋẏ

θ̇

 =

v cos(θ)
v sin(θ)
ω

 (3.3)

Knowing the angular and linear velocity, we can integrate it to obtain a
position.

⍵

θ

x

y

Figure 3.4: Robot in local frame [3]

As it is a non-linear system of differential equations we can integrate it
using a numeric integration. It can simply be integrated using Euler method
expressed in general terms as:

y(t+ h) ≈ y(t) + hy′(t) (3.4)

This method would be computationally cheap, but not as accurate as for
example fourth order of Runge-Kutta [18, p. 40]. The choice of the method

31

Darko Lukic: E-puck2 Simulation and ROS2 Interface

for the numerical integration is mainly based on sample rate we perform with
the pi-puck extension. In the case of e-puck2 physical robot, communication
with the on-board MCU is configured exchange data with pi-puck extension
at around 20Hz. Considering the slow sample rate and the computational
power of the Raspberry Pi Zero W to handle floating-point operations, it
is reasonable to choose the fourth order of Runge-Kutta over Euler method
and trade computation resources for better accuracy. Therefore, we express
the numerical integration as follows:

k00 = v cos θn−1

k01 = v sin θn−1

k02 = ω

k10 = v cos θn−1 +
t

2
k02

k11 = v sin θn−1 +
t

2
k02

k12 = ω

k20 = v cos θn−1 +
t

2
k12

k21 = v sin θn−1 +
t

2
k12

k22 = ω

k30 = v cos θn−1 + tk22

k31 = v sin θn−1 + tk22

k32 = ω

(3.5)

xnyn
θn

 =

xn−1yn−1
θn−1

 +
t

6

k00 + 2(k10 + k20) + k30
k01 + 2(k11 + k21) + k31
k02 + 2(k12 + k22) + k32

 (3.6)

Notice in Figure 3.3 that the orientation is represented as a quaternion
while our orientation is represented in Euler angles. To convert the Euler
angles to quaternions we reference to [19, p. 12]:

q(αx, αy, θ) =

cos αx

2 cos
αy

2 cos θ2 + sin αx
2 sin

αy

2 sin θ
2

− cos αx
2 sin

αy

2 sin θ
2 + cos

αy

2 cos
αy

2 sin θ
2

cos αx
2 cos θ2 cos

αy

2 + sin αx
2 cos

αy

2 sin θ
2

cos αx
2 cos

αy

2 sin θ
2 − sin αx

2 sin θ
2 sin

αy

2

 (3.7)

in which we can neglect αx and αy as those two elements are always 0 for
differentially-wheeled robots.

32

Darko Lukic: E-puck2 Simulation and ROS2 Interface

At this point, the obtained x, y, q, ẋ, ẏ and θ̇ are packed in nav msgs/Odometry

(see Figure 3.3) and published periodically at 20Hz.
With nav msgs/Odometry messages the rest of the ROS2 is aware of

robot’s odometry data. However, in addition to odometry data, the odom-
etry frame has to be defined as well to explain the robot’s position with
respect to the odometry frame. For that purpose ROS2 defines transform
messages of type geometry msgs/TransformStamped (see Figure 3.5). In
short, transform messages are used to create a transform tree to keep track
of multiple coordinate frames over time. Keeping track of the coordinate
frames is an essential aspect of ROS in general, and it will be properly
explained in Chapter 6 in which it will be extensively utilized.

geometry msgs/TransformStamped

(std msgs/Header) header

(string) child frame id

(geometry msgs/Transform) transform

(geometry msgs/Vector3) translation

(geometry msgs/Quaternion) rotation

Figure 3.5: geometry msgs/TransformStamped message type definition in
ROS2

However, to control the robot’s velocity a message of type geometry -

msgs/Twist (see Figure 3.6) has to be utilized. Therefore, the node has to
subscribe to the topic and set the wheels’ angular speed accordingly.

geometry msgs/Twist

(std msgs/Header) header

(geometry msgs/Vector3) linear

(geometry msgs/Vector3) angular

Figure 3.6: geometry msgs/Twist message type definition in ROS2

The target velocity of the left (vleft) and right (vright) can be obtained
as:

vleft = vref + L
ωref

2

vright = vref − L
ωref

2

(3.8)

where vref is a reference linear velocity (available in the ROS2 message
.linear.x) and ωref angular reference velocity (available in the ROS2 mes-
sage .angular.z). Webots expect the velocity to be given in radians per

33

Darko Lukic: E-puck2 Simulation and ROS2 Interface

second (rad/s), therefore:

ωleft =
vleft
R

ωright =
vref
R

(3.9)

Within this section, a minimal implementation of velocity control and
odometry is given. It allows the e-puck2 to use the standard ROS2 interface
to receive velocity control commands and to publish it’s position and other
relevant information within the odometry frame. Messages of type geom-

etry msgs/TransformStamped are published to topic name /tf, messages
of type nav msgs/Odometry are published to a topic name /odom and mes-
sages of type geometry msgs/Twist are received from topic name /cmd vel.
Those topic names follow ROS2 conventions for topic naming and can be
changed using ROS2 remapping2.

3.3.2 Distance Sensors

E-puck2 is equipped with 8 infra-red sensors and one ToF sensor (see Figure
3.7). These sensors are modeled as DistanceSensor3 in Webots.

ps2

ps
1

p
s0

ps3

ps
4

ps5

ps6

p
s7 to
f

Figure 3.7: Distance sensors available on e-puck2

All details about the sensors are obtained from the Webots and published
to a topic of type sensor msgs/Range4.

2Tutorial on ROS2 remapping can be found at https://index.ros.org/doc/ros2/

Tutorials/Node-arguments/#id1.
3More information about DistanceSensor nodes is available https://cyberbotics.

com/doc/reference/distancesensor.
4Definition of sensor msgs/Range message type is available at https://github.com/

34

https://index.ros.org/doc/ros2/Tutorials/Node-arguments/#id1
https://index.ros.org/doc/ros2/Tutorials/Node-arguments/#id1
https://cyberbotics.com/doc/reference/distancesensor
https://cyberbotics.com/doc/reference/distancesensor
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg

Darko Lukic: E-puck2 Simulation and ROS2 Interface

Laser Scanner

ROS2 defines sensor msgs/LaserScan5 for LiDARs and other types of pla-
nar laser range-finders. Those messages are commonly used by ROS2 com-
munity packages like navigation2 and slam toolbox. The message type
requires an array of measurements at angles that are equally distanced from
each other.

Therefore, even though there is no LiDAR available on the e-puck2, it
is possible to emulate it using available distance sensors. Since the distance
sensors are not evenly distributed, virtual distance sensors are added to fill
space between the actual distance sensors (see Figure 3.8). These virtual
distance sensors always give measurements of 0 meters which corresponds to
invalid measurement (as minimum valid range in sensor msgs/LaserScan

message is defined to be greater than 0 meters).

ps2

ps
1

p
s0

ps3

ps
4

ps5

ps6

p
s7 to
f

Figure 3.8: Virtual distance sensors are added to emulate LiDAR, making
the angle difference between the rays constant (15◦)

3.3.3 Light Sensors

E-puck2 has eight infra-red sensors which, besides proximity, can measure
light intensity as well. ROS2 interface for light sensors uses messages of type

ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg.
5Definition of sensor msgs/LaserScan message type is available at https://github.

com/ros2/common_interfaces/blob/master/sensor_msgs/msg/LaserScan.msg.

35

https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Range.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/LaserScan.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/LaserScan.msg

Darko Lukic: E-puck2 Simulation and ROS2 Interface

sensor msgs/Illuminance6. The message type requires the measurements
to be in Lux units (illuminance) while measurements acquired in Webots7

are expressed in watts per square meter [W/m2] (irradiance). The conversion
is done according to [20].

3.3.4 Inertial Measurement Unit

IMU in Webots modeled as two nodes, Accelerometer and Gyro. Measure-
ments from those two nodes are combined and packed into messages of type
sensor msgs/Imu.

3.3.5 Camera

Typically, cameras in ROS2 use two topics, one for data (images) and an-
other one for intrinsic camera parameters. Images from Webots camera
node are sampled, packed in ROS2 messages of type sensor msgs/Image

and published repeatedly. The intrinsic parameters are defined by ROS2
has the following form:

K =

fx 0 cx
0 fy cy
0 0 1

 (3.10)

Webots doesn’t provide such a matrix, but it is straightforward to create
one from the existing parameters. Since Webots camera doesn’t provide
distortions that move the focal length then fx = fy which is equal to the
focal length that can be obtained in Webots (e.g. getFocalLength()). The
principal point also doesn’t have offset, but it is in the center of the image
cx is equal to image width

2 and cy is equal to image height
2 .

3.3.6 LEDs

There are eight LEDs available in the robot and they are controlled with
messages of type std msgs/Int32. The last three bytes of the value are used
to set three RGB components in case of RGB LEDs and for the regular LEDs
the value is used to set the intensity. Arguably here, message type std -

msgs/ColorRGBA may be more suitable, but std msgs/Int32 is chosen to
be more consistent with Webots API.

6Definition of sensor msgs/Illuminance message type is available at https://github.
com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Illuminance.msg.

7Light sensors in Webots are represented as LightSensor node - https://

cyberbotics.com/doc/reference/lightsensor.

36

https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Illuminance.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/Illuminance.msg
https://cyberbotics.com/doc/reference/lightsensor
https://cyberbotics.com/doc/reference/lightsensor

Darko Lukic: E-puck2 Simulation and ROS2 Interface

3.3.7 Final Interface

In the table bellow (see Table 3.1) the final interface is shown.

Topic name Message type Description

/cmd vel geometry msgs/Twist Controls robot’s velocity

/odom nav msgs/Odometry Odometry measurements from wheels

/ps[0-7] sensor msgs/Range Measurements from infra-red sensors

/tof sensor msgs/Range Measurements from ToF sensor

/scan sensor msgs/LaserScan Emulated LiDAR measurements

/ls[0-7] sensor msgs/Illuminance Light measurements from infra-red sensors

/imu sensor msgs/Imu Measurements from IMU

/led[0-7] std msgs/Int32 Controls LEDs

/gs[0-2] sensor msgs/Range Measurements from ground sensors

/image raw sensor msgs/Image Camera images

/camera info sensor msgs/CameraInfo Camera intrinsic parameters

/tf tf2 msgs/TFMessage Dynamic transforms

/tf static tf2 msgs/TFMessage Static transforms

Table 3.1: Complete ROS2 interface for e-puck2 robot

In addition to the previously mentioned topics, there are topics with
name /gs[0-2], and those topics publish data from ground sensors. The
ground sensors can be bought as a separate e-puck2 module. Therefore, this
part of the ROS2 interface will be automatically created if the module is
present in the e-puck.

Another topic not mentioned before is /tf static. It is used to describe
transformations between different coordinate frames that do not typically
change (for example, a transformation between the robot’s base and the Li-
DAR). Messages published to this topic have specific QoS configured, dura-
bility is set to be transient local. The transient local QoS means that the
nodes joined to the system will receive the messages even though the mes-
sages are published much earlier and avoiding periodic publishing reduces
the load on the ROS2 driver as the messages have to be published only once.

Another performance improvement is made by not publishing the mes-
sages all the time. Messages are published only if the subscribers are avail-
able. This significantly improves performance, especially in the camera’s
case, as it is very CPU/GPU intensive task. For example, on the same
computer and in the same Webots simulation, with camera of resolution
640x480, the simulation can run almost 2 times faster (1.81 times faster in
e-puck2 default word). The difference can be much bigger for robots with
multiple camera and many other sensors.

37

Chapter 4 ROS2 Interface for
Physical E-puck2

Details about ROS2 interface implementation on the e-puck2 physical robot
will be given in this chapter. Even though the objective is to create the
same ROS2 interface as the one explained in the previous chapter, the im-
plementation is very different. The difference mostly comes from the physical
interface to the sensors and actuators, performance limitations, and CPU
architecture. Therefore, these differences will be emphasized in this chapter.

4.1 Introduction

Pi-puck extension uses Inter-Integrated Circuit (I2C) and Universal Serial
Bus (USB) to communicate with sensors and actuators available on the e-
puck2 robot (see Figure 4.1).

Raspberry Pi Zero W

Camera
(OV7670)

Microcontroller
(STM32F407)

ToF sensor
(STM-VL53L0X)

IMU
(MPU-9250)

Motors LEDs

Infra-red
(light + proximity)

USB

I2C I2C

I2C

Figure 4.1: Components utilized in ROS2 driver

Therefore, different communication channels are adopted for various sen-
sors and actuators. LEDs, motors, and infrared sensors are connected to the

38

Darko Lukic: ROS2 Interface for Physical E-puck2

on-board MCU, allowing the Raspberry Pi Zero W to access the devices over
I2C. For the infrared sensors, this is necessary as Raspberry Pi Zero W does
not have any Digital-to-Analog Converter (DAC) module. Therefore, the
MCU acts as a slave which stands between analog sensors and actuators, or
actuators that require deterministic updates (motors). With IMU and the
ToF sensor, Raspberry Pi Zero W communicates directly over I2C, while
with the camera, the communication is done over USB.

Sensor function Sensor model

Camera Omnivision OV7670 CMOS1

Distance and light sensors TCRT1000

IMU InvenSense MPU-9250

ToF STM-VL53L0X [21]

Table 4.1: List of the relevant sensors available on e-puck2 robot shown in
Figure 4.1

The protocol used to communicate with the sensors is explained in the
corresponding sensor’s documentation, while the communication with the
MCU is specified by the format shown in Table 4.2 and Table 4.3.

Left speed (2) Right speed (2) Speaker (1) LED[1,3,5,7] (1)

LED2 (3) LED4 (3) LED6 (3) LED8 (3)

Settings (1) Checksum (1)

Table 4.2: Message format sent from the Raspberry Pi Zero W to the MCU.
Bolded fields highlight the most and the least significant bytes in the packet.

8 x Prox (16) 8 x Ambient (16) 4 x Mic (8) Selector + button (1)

Left steps (2) Right steps (2) TV remote (1) Checksum (1)

Table 4.3: Message format sent from the MCU to the Raspberry Pi Zero
W. Bolded fields highlight the most and the least significant bytes in the
packet.

4.2 ROS2 on Raspberry Pi OS

Before the ROS2 driver is created, ROS2 has to be installed on the Raspberry
Pi Zero W. The Raspberry Pi Zero W board contains CPU with Arm32
architecture and Raspberry Pi OS. The ROS2 does not officially support this
configuration, and the standard installation procedure using OS’ package
manager doesn’t work. The closest official support is a source compilation

39

Darko Lukic: ROS2 Interface for Physical E-puck2

for Debian Buster placed as a tier 3 support2. This means that ROS2 has to
be cross-compiled and that potential incompatibilities have to be manually
resolved.

Since the ROS2 driver is intended for a wide range of users, the installa-
tion procedure has to be user-friendly. For that purpose, three installation
procedures are created to fit different use cases, using preconfigured Secure
Digital card (SD card), compilation on Raspberry Pi Zero W, and cross-
compilation from the user’s PC. A comparison of these methods is given by
Table 4.4.

Using image Compilation on the board Cross-compilation

Compilation speed ++ - +

Easy to use ++ - –

Flexibility – ++ +

Table 4.4: Comparison of different installation methods provided in the scope of the project

Using the existing image with ROS2 and other tools configured is the
most accessible approach for the users. The problem appears once the user
has to upgrade the ROS2 version, install a new package, or to develop a
custom package that has a lot of dependencies as compilation time is slow.
For those use cases, cross-compilation tools are provided.

4.2.1 ROS2 Cross-compilation

In the scope of the project, tools are built to help with the process of ROS2
cross-compilation. All cross-compilation dependencies and configurations
are packaged into a Docker container3. This means that the user does not
need to worry about host OS and tools compatibility.

2ROS2 supported platforms are defined by REP 2000 available at https://www.ros.

org/reps/rep-2000.html#foxy-fitzroy-may-2020-may-2023.
3An in-depth guide about the ROS2 cross-compilation is available at https://github.

com/cyberbotics/epuck_ros2/tree/master/installation/cross_compile.

40

https://www.ros.org/reps/rep-2000.html#foxy-fitzroy-may-2020-may-2023
https://www.ros.org/reps/rep-2000.html#foxy-fitzroy-may-2020-may-2023
https://github.com/cyberbotics/epuck_ros2/tree/master/installation/cross_compile
https://github.com/cyberbotics/epuck_ros2/tree/master/installation/cross_compile

Darko Lukic: ROS2 Interface for Physical E-puck2

Host OS

Docker container
Raspberry Pi Zero W

Ubuntu 18.04

Toolchain Custom
commands

/home/develop/rootfs /

/home/pi/ros2

rootfs

ros2_ws

install

build

/home/develop/ros2_ws

SS
HF

S

SS
HF

S

bi
nd

m

ou
nt

bi
nd

m

ou
nt

src

Figure 4.2: ROS2 cross-compilation setup

The typical setup of using the cross-compilation tools created in the
scope of this project is shown in Figure 4.2. The boxes in green repre-
sent directories while the others are software tools. ros2 ws is the ROS2
workspace, it contains source files, temporary build files, and compiled out-
put (libraries and executables). The source code available in this directory
is compiled with cross-compilation tools in the Docker container while the
result stays present on the host OS. Both directories are available in the
Docker container as well as on the host OS.

Once the ROS2 packages are compiled, they can be used by copying them
into the ros ws/install directory or by mounting them onto the Raspberry
Pi Zero W. However, it is worth noting that mounting the directory can
significantly increase productivity as copying the files is avoided.

4.3 Programming Language

Initially, a ROS2 driver with a few basic features for the physical e-puck2
is implemented in Python. However, as the ROS2 driver included more
sensors, the CPU load was too high to handle other functionalities. There-
fore, the implementation has been upgraded to C++ for the computational
speedup.

41

Darko Lukic: ROS2 Interface for Physical E-puck2

0 10 20 30 40 50 60
time (s)

0

10

20

30

40

50

60

70
CP

U
(%

)

0

10

20

30

40

Re
al

 M
em

or
y

(M
B)

(a) CPU and RAM load with Python

0 10 20 30 40 50 60
time (s)

0

5

10

15

20

25

CP
U

(%
)

0

5

10

15

20

25

30

Re
al

 M
em

or
y

(M
B)

(b) CPU and RAM load with C++

Figure 4.3: Performance comparison of the similar node ROS2 node im-
plemented in Python and C++. The CPU utilization and RAM usage are
measured using psrecord tool4

Figure 4.3 shows performances of two ROS2 nodes with the same set of
features, but implemented with different programming languages, Python

4The exact command to measure the load is psrecord $(pgrep epuck2 driver)

--interval 1 --plot plot.pdf --duration 60

42

Darko Lukic: ROS2 Interface for Physical E-puck2

and C++. More precisely, they both publish odometry data, measurements
from eight distance sensors (including the virtual laser scanner), and they are
both subscribed to the velocity control topic. In the figure, we can observe
that CPU usage is three times lower, while RAM is almost two times lower
for C++. This analysis in the early stage of implementation steered the
development towards C++5.

4.4 Camera

As mentioned before, the camera available on e-puck2 (Omnivision OV7670
CMOS) captures images at 15 FPS in a resolution of 640x480. Compared to
the simulation, data produced by the camera has to be efficiently processed,
and intrinsic camera parameters have to be determined.

4.4.1 Camera Optimization

Our preliminary investigation showed that the ROS2 driver wasn’t able to
publish images more frequently than 3-4 FPS (a more thorough analysis
is available in Chapter 7). Publishing raw (uncompressed) images would
cause the network to become a bottleneck while compressing the images
before transmitting would put a high CPU load, effectively limiting FPS.
Fortunately, there is GPU available on Raspberry Pi Zero W on which spe-
cific image manipulation tasks can be offloaded.

Introduction

A brief overview on GPU on Raspberry Pi Zero W will be given first. The
typical architecture of the GPU and the related components is given in the
following figure (Figure 4.4):

5One of the bottlenecks was in the ROS2 client library for Python (rclpy) related
to timer implementation - https://github.com/ros2/rclpy/issues/520. Fixing it im-
proved the performances, but C++ implementation was still more efficient.

43

https://github.com/ros2/rclpy/issues/520

Darko Lukic: ROS2 Interface for Physical E-puck2

Figure 4.4: GPU architecture [4]

In the figure, there are three main components on the System On a Chip
(SoC): CPU, GPU, and RAM. The GPU has its own computational compo-
nents dedicated to different image processing tasks. These components are
orchestrated by VideoCore Operating System (VCOS) (an abstraction layer
on top of an Real-time Operating System (RTOS)), which also reads images
from the camera. Signaling between CPU and GPU is done through Video-
Core Host Interface (VCHI) while the images are shared by storing them on
the RAM. From a software point of view, the Multi-Media Abstraction Layer
(MMAL) library is used to interact with the GPU. The library is based on
Open Media Acceleration (OpenMAX), and the goal is to ensure consistent
interface across all GPUs available in different models of Raspberry Pi. For
a comprehensive explanation about hardware blocks, please refer to [4], and
for software [22], both are excellent sources of information.

44

Darko Lukic: ROS2 Interface for Physical E-puck2

ROS2 Camera Driver Implementation

There are a few available ROS1 and ROS2 packages that implement GPU
accelerated image acquisition and processing. Unfortunately, these packages
expect the camera to be connected via Camera Serial Interface (CSI), which
is not the case in e-puck2. Therefore, the whole ROS2 camera node is
implemented from scratch, including image acquisition based on V4L2 and
image processing (compression and resizing) based on MMAL.

ROS2 Node

MMAL
based block

V4L2
based blockOV7670

RAM

Camera

configuration
over I2C

image address
in RAM

GPU

processed
image

ra
w

 im
ag

e

VCHI

Figure 4.5: Camera software architecture

Figure 4.5 shows a software architecture of the camera node. Initially,
the camera is configured over I2C (block OV7670) and then V4L2 is used to
initiate an image capture and store it to the RAM. The pointer to the image
is passed through MMAL block, which interacts with the GPU to compress
and resize it. Finally, the GPU stores the processed image to the RAM, and
the pointer the processed image is available to the ROS2 camera node. The
node packs it into the corresponding messages type and publishes it.

ROS2 Camera Driver Usage

Since the camera transmits compressed images through the network, they
have to be uncompressed once the target computer is reached.

45

Darko Lukic: ROS2 Interface for Physical E-puck2

Raspberry Pi Zero W

Camera
node

Workstation

image_transport

republish

Custom
node

Custom
node

Another
node

RGB images
(uncompressed)

JPEG
image

(uncompressed)

RGB
images

(raw) RGB images
(uncompressed)

Figure 4.6: Image flow within ROS2 application

Figure 4.6 shows a typical flow of raw, compressed, and uncompressed
images within ROS2 application. The general idea is to make a compromise
between network utilization (less bandwidth is used if compressed images are
transferred) and CPU load (it is less CPU intensive to avoid image compres-
sion). Therefore, the camera node advertises two topics, one with RGB (raw)
images and the other with JPEG (compressed) images. A user can subscribe
to any of those two, and the node will start publishing corresponding images
to it. Usually, the optimal approach is to publish RGB images locally and
JPEG images over the network. The RGB images are consumed normally,
but JPEG images have to be received by an intermediate node (usually per-
formed by ROS2 node called image transport/republish), uncompressed
and published locally. The image transport/republish node supplies all
nodes available on the workstation with uncompressed images. It is an es-
pecially convenient solution when there are many nodes on the workstation
as the images are transferred only once through the network (nodes on the
workstation consume images from the image transport/republish node).

Camera Calibration

The intrinsic camera parameters of the Omnivision OV7670 camera (avail-
able on the e-puck2 physical robot) are not known. These parameters can
be found through a camera calibration process. To perform the camera cal-
ibration, we have to capture multiple images of 3D points that have known
positions in the real world. The camera projects the points to the camera
frame (2D) that can be modeled as equidistance projection (r = fθ, where
f is focal length, r radial distance, and θ angle) and parametrized with

46

Darko Lukic: ROS2 Interface for Physical E-puck2

a projection matrix (a matrix that contains intrinsic parameters). The 3D
points from the real world and the corresponding 2D points projected on the
camera frame represent a dataset used for the camera calibration. Then, we
use nonlinear optimization to find the projection matrix’s values that mini-
mize a position difference of obtained and expected 2D points in the camera
frame [23]. This process is automated by creating a custom ROS2 node that
relies on OpenCV’s calibration module.

4.4.2 Differential Drive

Besides the performance limitations of the Raspberry Pi Zero W that cause
issues, there are other limitations as well. In the case of odometry, in Table
4.2, you can notice that the number of ticks for the left and the right wheel is
limited to 2 bytes. Taking into account that it is a signed number (can take
a value from -32767 to 32767) and that there are 1000 ticks per revolution,
it can make around 32 revolutions before overflow (or 2πR 32767

1000 = 4.11m).
This means that the robot’s odometry will become completely wrong after
around 4 meters. To avoid this, the following simple approach is applied:

Algorithm 1: Overflow protection algorithm

input : Noverflow – Number of overflows (can be negative)
Ngrace – Constant which represents the maximum
difference in number of ticks between two sequential
samples
Pticks – Number of ticks in the previous sample
Cticks – Number of ticks received from the sensor

output: Tticks – Total (corrected) number of ticks
1 if |Pticks − Cticks| > 215 −Ngrace then
2 if Pticks > 0 ∧ Cticks < 0 then
3 increment Noverflow;
4 else
5 decrement Noverflow;

6 Tticks ← 216Noverflow + Cticks;

By applying Algorithm 1, in Tticks a total number of ticks will be stored,
taking overflows into the consideration. It is important to set Ngrace reason-
ably big such that |Pticks − Cticks| > Ngrace is only true when the overflow
occurs.

47

Darko Lukic: ROS2 Interface for Physical E-puck2

4.5 Software Quality Assurance

As a part of ROSIN6, this master project has to incorporate software en-
gineering best practices such as continuous integration [24], unit testing
and code reviews. Those practices are fully utilized throughout the whole
project, and they will be briefly explained here.

4.5.1 ROS2 Node Unit Tests

The unit tests are implemented according to the standard procedure recom-
mended by ROS2. Two ROS2 nodes are executed, one node is the actual
node we want to test while the other simulates the rest of the application
and runs tests.

ROS2 Test
Node

ROS2
Driver

Filesystem

I2C Module

tmp/i2c-read /tmp/i2c-write

file IOfile IO

DDS
ROS2 communication

Figure 4.7: Testing communication with the microcontroller

A concrete example for testing of the ROS2 driver is given in Figure
4.7. In the figure, ROS2 test node is used to emulate the rest of the ROS2
application. For example, it can publish a message to /cmd vel and set
angular velocity. The ROS2 driver should receive the message and send
the corresponding motor velocity through I2C. To verify whether proper
commands are sent over I2C, a special I2C module is created. It implements
two modes; in the regular mode, it interacts with I2C directly, while in the
testing mode, it writes everything to the filesystem. This way, ROS2 test
node has an opportunity to test commands addressed to the I2C.

6The Software Quality Assurance propositions of the ROSIN project can be fount at
https://www.rosin-project.eu/software-quality-assurance.

48

https://www.rosin-project.eu/software-quality-assurance

Darko Lukic: ROS2 Interface for Physical E-puck2

All unit tests are based on Python’s standard unit testing framework,
unittest, and ROS’ launch test.

4.5.2 Code Quality Tests

Besides the unit tests, many tests for static code analysis are used as well.
The following tests are used to perform code quality analysis:

• cppcheck detects undefined behavior (e.g., dead pointers, division by
zero or integer overflows) and security issues (e.g., buffer errors and
information leaks) in C++ code.

• cpplint verifies whether the user follows C++ best practices and it
detects syntax errors.

• clang format recommends how the C++ code should be formatted
and it fails if the code is not formatted properly.

• lint cmake verifies whether CMake files follow the best practices.

• flake8 enforces Python code to follow a style guide.

• pep257 verifies if docstrings in Python code are properly formatted.

• xmllint verifies whether XML files follow the best practices.

• copyright checks if the copyright header is present in the files.

4.5.3 Continuous Integration

Unit tests, code quality tests, and more are executed in the scope of CI. It
means that the source code is stored in Git repositories, and that a series
of tests are executed every time a new change is pushed. In particular,
every time a new commit is pushed, a Docker container is created, a ROS2
environment is configured, static code analysis is done, the packages are
built, and unit tested. If any of these actions fail, the whole test is considered
a failure, and a developer is forced to fix the error.

49

Chapter 5 E-puck2 Demos

Once a robot has running ROS2 driver, ROS2 nodes can be built on top of
it, or community ROS2 nodes can be integrated. Therefore, in this chapter,
various examples that utilize the e-puck2’s ROS2 interface will be shown
while focusing on custom-built nodes. All demos presented in this chapter
work with both the physical and simulated e-puck2 robots. Some demos are
also successfully tested with a few other simulated robots.

5.1 Visualizations

RViz2 acts as a ROS2 node, and it allows users to visualize the robot’s state
and perception of the environment in 3D. This tool is officially supported and
developed by the ROS2 team; it is commonly used in ROS2 applications for
visualizations and is extensively utilized throughout this project. Therefore,
a few use cases will be given here.

50

Darko Lukic: E-puck2 Demos

Odometry
history

Odometry
frame

Current pose

Range
messages

LaserScan
messages

Other robot’s
frames

Visualization
configuration

Figure 5.1: Typical visualization of e-puck2 in RViz2

RViz2 is very customizable, meaning it can visualize different aspects of
the robot depending on the user’s needs. Once the user is satisfied with
the visualization, the view can be saved to a file for later reuse. In this
master project, there are many RViz2 configurations provided, optimized for
different scenarios like sensor inspection, mapping, and navigation. These
configurations will be automatically loaded, depending on the launch file
that is used.

In Figure 5.1 a default view of RViz2 for the e-puck2 robot is shown. It
visualizes the robot’s pose obtained from the odometry, history of odometry
readings, different coordinate systems (like odometry, robot’s base, distance
sensors, and similar), range, and laser scan measurements.

5.2 Drive Calibration

Two constants are essential to have accurate odometry: wheelbase (distance
between the contact points of the two wheels), and wheel radius. These
constants can be measured, but even with the perfect measurements, they
are subject to systematic odometry errors, caused by imperfections in the
design and mechanical implementation of a mobile robot. Typical systematic
error is uncertainty about the wheelbase and means that the rubber tires
contact the floor not in one point, but rather in a contact area [25].

Therefore, we use /odom and /cmd vel topics that are previously created

51

Darko Lukic: E-puck2 Demos

to calibrate the two important constants for odometry. The technique is
inspired by the one presented in [25]; the robot should move linearly, we can
compare the anticipated distance (self-reported distance) with the actual
distance. The linear movements allow us to adjust the wheel radius. For
the wheelbase, the robot is rotated for a predefined number of rotations;
then, it is compared to the actual number of rotations, and the wheelbase
is adjusted accordingly (see Figure 5.2).

Translation Rotation

Figure 5.2: Differential drive robot calibration process

The custom-created node continuously receives the readings from the
/odom topic to stop the robot exactly when the robot reaches the goal po-
sition. It also sets appropriate linear or angular velocity depending on the
type of the test. Finally, the calibration node is successfully utilized for
odometry calibration of the e-puck2 robot.

5.3 Custom Mapper Node

The goal of the next example is to utilize a larger portion of the created
ROS2 interface. The goal is to map the environment using an e-puck2 robot
and its distance sensors. A few approaches are considered to meet the goal:

• Utilize the existing SLAM solutions available for ROS2 (slam toolbox

or cartographer).

• Create a simple custom solution.

52

Darko Lukic: E-puck2 Demos

• Make a bridge to ROS1 workspace and use SLAM solutions available
for ROS1 (e.g., gmapping is only available for ROS1).

• Port gmapping SLAM solution (that is available only for ROS1) to
ROS2.

In tests, slam toolbox and cartographer were not able to provide ac-
curate mapping due to the scarcity of the distance measurements1. Using
gmapping through ROS1 bridge indeed gave good results. However, complex
installation and usage is something we tried to avoid as it is not user-friendly.
Porting gmapping to ROS2 is feasible, but maintenance of a such complex
software would be time intensive.

Finally, considering the scope of this master project and the high preci-
sion of e-puck2 odometry, the decision was to create a simple mapping node.
The node uses odometry exclusively for localization. In general, this is not
the right solution knowing that the odometry accumulates the error, but it
provides satisfying results for small maps.

Algorithm 2: Mapping process

input : Lscans – Laser scan readings
Podom – Position of the robot obtained from the odometry

output: Mmap – Map of type nav msgs/OccupancyGrid

1 Oworld = [] // List of coordinates of obstacles

2 use tf2 to get position of laser scanner Pscan;
3 for each Lscan in Lscans do
4 determine angle of ray (α) from index;
5 Ox ← Pscan + Lscancos(α);
6 Oy ← Pscan + Lscansin(α);
7 add coordinates (Ox, Oy) to Oworld;

8 write coordinates (Ox, Oy) to Mmap;
9 use Bresenham’s line algorithm to write empty space;

The algorithm (see Algorithm 2) uses a power of tf2 package which
listens for messages of /TfMessage to determine the position of the virtual
laser scanner in respect to the odometry frame. With a few transformations,
it is straightforward to calculate the position of the obstacles on the map.
To fill the empty space between the robot and the obstacle (white pixels in
Figure 5.3), Bresenham’s line algorithm is implemented [25].

1The author of slam toolbox, Steve Macenski, explained that modern graph-based
SLAM solutions do not provide good results when used with e-puck2 robot (or similar
robots with a few distance sensors) like old particle filter based SLAM solutions - https:
//github.com/SteveMacenski/slam_toolbox/issues/192.

53

https://github.com/SteveMacenski/slam_toolbox/issues/192
https://github.com/SteveMacenski/slam_toolbox/issues/192

Darko Lukic: E-puck2 Demos

(a) Webots simulation with e-puck2

(b) Map visualized in RViz2

Figure 5.3: Mapping results shown in RViz2

Finally, the result can be observed in the figure above (Figure 5.3).

5.4 Navigation Integration

Another example is navigation. For this demo, the navigation2 community
package is integrated.

54

Darko Lukic: E-puck2 Demos

Figure 5.4: Architecture of the navigation2 package2

It uses transforms, maps, and measurements from range finders to control
the robot’s velocity, effectively avoiding obstacles and converging towards
the destination (see Figure 5.4). Based on the provided map, it builds a
global cost map used by a planner to find a global path (e.g., using an
A star algorithm) to the destination. Based on the data from the range
finders, it builds a local cost map that is used by the controller server to
avoid obstacles locally. The controller server is also used to follow the path
generated by the planner server, and it usually uses an implementation called
DWB local planner. The planner considers the robot’s maximum rotational
and linear velocity and various critics (e.g., goal align and path align), to
issue velocity commands [26].

2The image is taken from the official navigation2 GitHub repository available at
https://github.com/ros-planning/navigation2.

55

https://github.com/ros-planning/navigation2

Chapter 6 The Generalization of
ROS2 Interface for
Webots

6.1 Introduction

Up to now, the ROS2 interface for the e-puck2 robot in Webots has been
created manually. It means that the Webots controller has to be written
to expose ROS2 interfaces. Although this method gives a developer much
flexibility, it is time demanding, prone to errors, and requires changes every
time the Webots robot model is alternated. Since the Webots model is
accessible from the Webots API, we saw an opportunity to automate the
process of creating ROS2 driver for Webots.

The primary objective is to create a universal launch file that is supposed
to read the Webots robot model and create ROS2 interface accordingly.
This process has to be fully automated by default, highly configurable, and
it has to work in conjunction with the user’s custom code. The universal
launch file allows users to bootstrap the project and benefit from reusable
blocks quickly, furthermore, it also offers a possibility to configure the ROS2
interface and extend the driver if needed.

This system is supposed to bring a few major advantages for the users,
the most important of which is the reduction of development time. Instead
of writing a custom Webots controller, which exposes the ROS2 interface
for each robot, the process of creating a ROS2 interface can be completely
avoided, reducing the development time significantly. The second major
advantage of the universal driver is that it is less prone to errors. Since
the universal driver is supposed to be maintained by the Webots team and
community, the bugs should be discovered and fixed quickly. However, the
universal driver and launch introduce a level of abstraction, hiding imple-
mentation details and customization possibilities. Therefore, the building
blocks must be carefully designed to allow a high level of customization if
needed.

As mentioned, the universal driver needs access to the Webots robot
model to generate a proper ROS2 interface. This will present multiple chal-
lenges: if a Webots robot is not configured to work as Supervisor, many

56

Darko Lukic: The Generalization of ROS2 Interface for Webots

aspects of Webots robot model are hidden. Therefore, the Webots controller
API has to be extended to provide relevant endpoints that can be utilized
for publishing of ROS2 transforms and resolving actual sensor readings. The
other missing function in the Webots API is, for example, access to a lookup
table of DistanceSensor. The access to the lookup table is needed because
the sensor msgs/Range topic requires real values to be published instead of
raw values.

6.2 Design

In this section, more details on the design will be given. Nevertheless, we
need to review the approach that has taken place up to now (see Figure 6.1).

Webots ROS2 Node

Webots API

Specific ROS2 Driver

Webots Simulation

pipes + shared memory
(interprocess communication)

Figure 6.1: Technique of creating ROS2 interface within Webots before uni-
versal driver and launch file are introduced

The user had to write a layer that sits in between low-level API (Webots
API in this case) and ROS2 interface. Although this is a necessary step for
the real robots and allows users a lot of customization (or even the ability
to optimize), the objective is to avoid the step for the reasons given in the
previous section (see Section 6.1).

57

Darko Lukic: The Generalization of ROS2 Interface for Webots

Webots Controller

Webots API

Universal ROS2 Driver

Webots Simulation

pipes + shared memory
(interprocess communication)

DistanceSensor
Device IMU Device Laser

Device ... User Specific
Code

Figure 6.2: Webots and ROS2 interface using the new universal driver

With the universal driver, a notion of a device is introduced. A device1,
in this context, represents a module which transforms data from one or more
Webots devices to one or more ROS2 topics and services. By default, the
universal driver will go through all Webots devices available in a robot and
try to match them with a suitable device. If the match is found, a new
device is instantiated, a Webots device is assigned to it, and the device will
start publishing or subscribing to the ROS2 messages.

All devices are configurable, meaning that they will use default param-
eters if custom parameters are not supplied. Since a device can be parame-
terized from multiple sources, the priority is the following:

• A parameter value obtained through ROS2 parameters has the highest
priority, and it will override parameter values obtained through any
other source.

• Python dictionary consisted of parameters passed to the device man-
ager is the second in the priority list.

• Default or autogenerated values have the least priority. The autogen-
erated values are usually based on Webots’ device names.

If a user is not satisfied with the customization achieved by using the
parameters, the user can write custom code for it. A good example is dis-
tance sensors in e-puck2. The e-puck2 has nine distance sensors positioned
around the robot that could emulate LiDAR and publish data to the Laser-
Scan topic. Allowing something like this in the universal driver would be

1Note that “device” is related to a module in the universal driver and ”Webots device”
is a node that represents a robot device in Webots.

58

Darko Lukic: The Generalization of ROS2 Interface for Webots

too much work, and little gain due to the small number of users who would
benefit from it. Therefore, users can disable the ROSification of Webots dis-
tance sensors and implement a custom code that will publish measurements
to LaserScan topic2.

6.3 ROS2 Transformations

In context of ROS2, transforms represent translation and rotation between
two coordinate frames (see Figure 6.3). Keeping track of the transforms is
important as it can provide a relative translation and rotation of two arbi-
trary coordinate frames in a transforms tree at any point in time [5]. ROS2
considers the transforms as a vital aspect of robotics applications. There-
fore, many ROS2 packages rely on the ROS2 transformations. For example,
the slam toolbox uses the transforms to find translation and rotation be-
tween base link and a link that publishes to a topic of type LaserScan.
This is necessary as otherwise, the slam toolbox could not determine the
robot’s position in the map.

Figure 6.3: An example of coordinate frames visualized in RViz2 [5]

Considering the importance of transforms in ROS2, the universal driver
has to offer functionality to publish those transforms automatically. To

2The described example is implemented, explained in more details and it is pub-
licly available at https://github.com/cyberbotics/webots_ros2/tree/master/webots_
ros2_core#custom-launcher-file-and-driver

59

https://github.com/cyberbotics/webots_ros2/tree/master/webots_ros2_core#custom-launcher-file-and-driver
https://github.com/cyberbotics/webots_ros2/tree/master/webots_ros2_core#custom-launcher-file-and-driver

Darko Lukic: The Generalization of ROS2 Interface for Webots

publish transforms automatically, three approaches are considered, two of
which are implemented in this project’s scope:

• Method #1. The absolute position of each solid node is sampled pe-
riodically and published as a dynamic transform. The whole method
can be implemented in the universal driver.

• Method #2. A new API function is added to Webots, which retrieves
a tree of important links and joints. The tree is parsed in the universal
driver, and relative transforms are published based on corresponding
encoder readings (PositionSensor node in Webots).

• Method #3. A new API function is added to Webots which retrieves
URDF as a string. URDF string is then passed to robot state pub-

lisher as ROS2 parameter. Furthermore, from the universal driver,
encoder readings are published periodically as messages of type sen-

sor msgs/JointState. These messages are consumed by robot -

state publisher, and corresponding transforms are published.

The following table compares the most important aspects of these meth-
ods.

Method #1 Method #2 Method #3

Preserves noise No Yes Yes

Supervisor mode is necessary Yes No No

Recognizes static transforms No Yes Yes

Implemented in the project scope No Yes Yes

Table 6.1: Comparison of different methods considered for publishing ROS2 transforms

As shown in Table 6.1, there are two significant reasons why Method #1
is not used: it does not preserve noise that is coming from the encoders, and
the robot has to work in supervisor mode. Even though the implementation
does not require changes to Webots core, a considerable disadvantage is a
fact that it does not preserve a realistic behavior of the robot supported in
Webots.

6.3.1 Transforms from URDF

This section describes Method #3, which is based on exporting an URDF
document from Webots.

URDF vs. Webots’ Robot Model Representation

However, it is important to compare URDF format and Webots’ robot model
representation first. URDF is an Extensible Markup Language (XML) for-
mat and it uses only two primitives to describe robot model, links and joints.

60

Darko Lukic: The Generalization of ROS2 Interface for Webots

The URDF document has to contain at least one link, usually named as
base link, and its children can be only joints [27] (see Figure 6.4b). There-
fore, a link cannot be encapsulated inside another link. Thus, a link can
be connected to the other link with a common joint only. This is a main
difference to Webots’ robot representation as the root node in Webots en-
capsulates other nodes. In addition to it, Webots has richer specter of nodes.
Besides the links (Solid node in Webots) and joints there are also nodes
like Group, Transform, Geometry, and Shape (see Figure 6.4b).

Robot {

children [

Solid {

children [

Camera {

name "camera"

}

]

}

]

}

(a) Webots’ model representation

<?xml version="1.0"?>

<robot name="robot"

xmlns:xacro="http://ros.org/wiki/xacro">

<link name="base_link"/>

<link name="solid"/>

<link name="camera"/>

<joint name="base_link_solid_joint"

type="fixed">

<parent link="base_link"/>

<child link="solid"/>

<origin xyz="0 0 0" rpy="0 0 0" />

</joint>

<joint name="solid_camera_joint"

type="fixed">

<parent link="solid"/>

<child link="camera"/>

<origin xyz="0 0 0" rpy="0 0 0" />

</joint>

</robot>

(b) Model representation in URDF

Figure 6.4: Typical robot representation in URDF and in Webots of the
same model

The described two main differences in a robot model, representation,
hierarchy, and node diversity, make URDF export feature implementation
rather complicated.

URDF Export

In this section, the main points of URDF export feature will be described.
It is vital to know that this feature is implemented in Webots core utilizing
the existing exporting robot models’ mechanisms. The mechanism already
supports a robot model to be exported to VRML, X3D and PROTO doc-
uments. Even though the mechanism provides useful features, flexibility to
implement URDF export is limited, and therefore the implementation may
differ from what is expected in general (nodes in URDF are related by ID,
while nodes in Webots are encapsulated).

61

Darko Lukic: The Generalization of ROS2 Interface for Webots

The Webots’s mechanism to handle exports depends on a few methods
declared in WbNode. In Webots, each node is derived from WbNode class and
in the context of URDF export it has the following prototype:

class WbNode {

protected:

// Calls `.writeExport()` to continue the export if needed

virtual void write(WbVrmlWriter &writer) const;

// Uses `WbVrmlWriter` to write node details a document

virtual void writeExport(WbVrmlWriter &writer) const;

// Uses `WbVrmlWriter` to recursively continue export (export children)

virtual void exportNodeSubNodes(WbVrmlWriter &writer) const;

// Other declarations

};

Those methods have to be defined for each Webots node to write URDF
content using WbVrmlWriter class. Then, the methods are recursively called
from the tree root (Robot node) to the leaves. The algorithm in Figure
6.5 defines a strategy to export nodes that are related by ID instead of
encapsulating them.

62

Darko Lukic: The Generalization of ROS2 Interface for Webots

Procedure write(this, writter)

; /* Ncurrent and Nqueue are global variables. Ncurrent represent a

reference on instance of WbNode, while Nqueue is a queue of the

references */

1 if Ncurrent 6= this ∧ this is not joint ∧ this is not in Nqueue then
2 add this to Nqueue ;

3 if Ncurrent is not set then
4 Ncurrent = this ;

5 writeExport(this) ;
6 if Ncurrent = this then
7 if Nqueue not empty then
8 Ncurrent = dequeue the last node from Nqueue ;
9 write(this, writter) ;

10 else
11 Ncurrent = NULL ;

Procedure writeExport(this)

1 if Ncurrent = this then
2 write URDF of link ;

Figure 6.5: Approach used to handle URDF’s flat nature in object-oriented
architecture

Properly implementing writeExport() to Webots’ nodes that represent
joints and links will produce a desired URDF document. Although, the
URDF document is accurate, it contains unnecessary links (see Figure 6.6a).

63

Darko Lukic: The Generalization of ROS2 Interface for Webots

base_link

Solid

(no name)

joint

device

(a) Exported model

base_linkjoint

device

(b) Webots’ model representation

Figure 6.6: Typical URDF and Webots robot representation

For example, in Figure 6.6a, there is Webots Solid node which got con-
verted to URDF link tagged as Solid (no name). Although this may be
desirable in some cases, it usually makes ROS2 transform tree complex,
which leads to unnecessary computations. In order to avoid the computa-
tions, a squashing is performed. It means that only relevant Webots nodes
are exported into URDF (as link nodes) while the others are neglected. The
relevant nodes are all nodes that have a name field defined. The field name

is always present for devices, and users can explicitly define name fields if it
should be exported as a URDF link.

As multiple intermediate Webots nodes can be neglected, the translation
of child node (I0) in respect to its parent node (IN) is defined as:

T IN
I0

= TI0 +
N−1∑
i=1

RIi
Ii−1

T
Ii+1

Ii
(6.1)

whereas the translation of the intermediate node (Im) in respect to its parent
(In) is represented by T In

Im
and consists of a three-dimensional vector.

In order to determine a rotation between two relevant links we use:

RIN
I0

=

N−1∏
i=0

R
Ii+1

Ii
(6.2)

Note that RIN
I0

is a 3×3 rotation matrix and that the matrix multiplication
has to be started from the parent. In the implementation, a node recursively

64

Darko Lukic: The Generalization of ROS2 Interface for Webots

tries to find a relevant parent (visiting nodes towards the tree’s root) while
adding the visited nodes to the list. Once the relevant node is reached, it
calculates the translation from the first element in the list.

The rotation matrix has to be converted to Euler angles around a fixed
axis (extrinsic) roll-pitch-yaw to match URDF’s specification. This is done
according to [28, p. 9].

Finally, the interprocess communication (from Webots simulation to We-
bots API) is extended to support a new function:

const char *wb_robot_get_urdf(const char *prefix);

The API function is exposed to C++, Python, MATLAB, Java, and
ROS client libraries.

Utilization of robot state publisher

Once the Webots’ API is capable of exporting URDF as a string, it can be
utilized in the ROS2 driver to publish ROS2 transforms. The approach to
publish the transform is given in Figure 6.7.

robot_state
_publisher

param/
robot_description

sensor_msgs/
JointState

e.g. RViz
geometry_msgs/

TransformStamped

Universal Driver

JointStatePublisher

RobotDevice

Figure 6.7: Publishing ROS2 transforms using URDF and robot state -

publisher

In the figure, the universal driver has to provide the parameter robot -

description (URDF string) and a topic with messages of type sensor -

msgs/JointState which contains readings from Webots PositionSensors.
The parameter and the topic are consumed by robot state publisher

(ROS2 community node) which publishes ROS2 transformations.

6.4 ROS2 Wrapped Devices

As mentioned before, the universal driver is supposed to create ROS2 au-
tomatically interface for each Webots device. In the scope of this master

65

Darko Lukic: The Generalization of ROS2 Interface for Webots

project, modules that perform the conversion from Webots to ROS2 inter-
face are created for all Webots devices available on e-puck2, Khepera IV,
and TurtleBot3 Burger. The code is designed to be easily expandable to
other Webots devices as well.

In this section, a brief explanation will be given for a few Webots devices.

6.4.1 Differential Drive

The differential drive module interacts with two motors and two position
sensors. The implementation is the same as explained in Section 3.3.1,
but it is decoupled from the rest of the driver to work as an independent
component. Additionally, it provides a high level of configurability (see table
below, Table 6.2).

Name Description

left encoder Name of position sensor mounted on the left wheel

right encoder Name of position sensor mounted on the right wheel

left joint Name of motor mounted on the left wheel

right joint Name of motor mounted on the right wheel

wheel distance Distance between left and right wheel in meters

wheel radius Radius of the wheels

command topic Topic name on which it should receive velocity commands

odometry topic Topic name to which it should publish odometry data

odometry frame Odometry frame name used in ROS2 transform messages

robot base frame Robot base frame name used in ROS2 transform messages

Table 6.2: Parameters available for differential drive module

6.4.2 Range

Webots returns values from distance sensors according to specified lookup
table3.

lookupTable [0 1000 0,

0.1 200 0.1]

It means it will not necessarily return a real distance to the closest object,
but what Webots considers a raw value (linearly interpolated value based on
the lookup table). Therefore, to obtain the actual distance, the lookup table
has to be read. The values are then interpolated according to the table.

3In the example of lookup table first column represents the actual measurement, the
second is the raw measurement, and the third column is the noise.

66

Darko Lukic: The Generalization of ROS2 Interface for Webots

However, Webots API does not provide function to retrieve lookup table.
Therefore, the function is implemented4 similarly to the one explained in
Section 6.3.1.

Then, in the universal controller, the actual values are returned, as shown
by Algorithm 6.8.

Procedure interpolate(xvalue, xstart, ystart, xend, yend)

1 return yend−ystart
xend−xstart (xvalue − xstart) + ystart ;

Procedure interpolateTable(xvalue, T)

1 for i← 0 to size of table T - 1 do
2 if (xvalueTraw[i] ∧ xvalue ≥ Traw[i+ 1]) ∨ (xvalue >

Traw[i] ∧ xvalue ≤ Traw[i+ 1]) then
3 return interpolate(xvalue, Traw[i], Tactual[i], Traw[i+ 1],

Tactual[i+ 1]) ;

; /* Extrapolation, assumes the table is sorted in descending order

*/

4 if xvalue > Traw[0] then
5 return interpolate(xvalue, Traw[0], Tactual[0], Traw[1], Tactual[1]) ;
6 else
7 return interpolate(xvalue, Traw[−2], Tactual[−2], Traw[−1],

Tactual[−1]) ;

Figure 6.8: Procedure used to interpolate table

Once actual values are obtained, the values are packed into messages of
type sensor msgs/Range and published.

Name Description

topic name ROS2 topic name

timestep Publish period in ms

disable Whether to create ROS2 interface for this sensor

always publish Publish even if there are no subscribers

frame id Value for header.frame id field

Table 6.3: Parameters available for distance sensor device

4The API function to obtained lookup table is also added for Accelerometer, Compass,
Gyro, InertialUnit, LightSensor and TouchSensor. All API functions are also added to
C, C++, Python, MATLAB, Java and ROS.

67

Chapter 7 Results and Interpre-
tation

This chapter analyzes whether the ROS2 driver for the e-puck2 physical
robot and the ROS2 universal driver provide expected behavior. The anal-
ysis will be shown through three pillars:

• Verification whether the e-puck2 physical and simulated robots have
a similar behavior with the same controller.

• Verification whether simulated e-puck2 and Khepera IV robots have a
similar behavior with the same controller.

• Verification whether the ROS2 universal driver works properly with
the other robots such as TIAGo++ and TurtleBot3 Burger.

7.1 Comparison of Physical and Simulated E-puck2

In this section, we want to verify whether the ROS2 interface is the same
for the physical and simulated e-puck2 robots. The difference of the ROS2
interfaces will then be quantified with ROS2 navigation and mapping con-
trollers.

7.1.1 ROS2 Interface Endpoints Comparison

The ROS2 interfaces for physical and simulated robots are very similar,
image-related topics being the only difference. The physical e-puck2 robot
advertises additional /image raw/compressed topic of type sensor msgs/CompressedImage

and the robot uses it to transfer compressed images over the network.

7.1.2 Camera Performance Comparison

In this section, we want to compare different ROS2 camera node implemen-
tations on the physical e-puck2 robot, analyzing at which resolution and FPS
it can operate. The analysis aims to determine a suitable way to transport
the images from Raspberry Pi Zero W and identify bottlenecks.

68

Darko Lukic: Results and Interpretation

In terms of compression, the images are transported as raw, JPEG com-
pressed and as a Theora compressed video stream1. In terms of color en-
coding, RGB and YUV are tested. And in terms of nodes separation, the
testing node was located on-board or on workstation while communicating
to the Raspberry Pi Zero W over Wi-Fi.

In the Table 7.1, performances are measured in FPS and the measure-
ments are given for different camera implementations.

32x24 [FPS (σ)] 160x120 [FPS (σ)] 640x480 [FPS (σ)]

RAW over Wi-Fi 13.95 (0.009s) 10.08 (0.013s) 1.62 (0.096s)

RAW on-board X X 3.80 (0.064s)

JPEG over Wi-Fi X X 2.97 (0.105s)

JPEG over Wi-Fi with white-noise X X 0.95 (0.998s)

JPEG on-board X X 2.10 (0.016s)

RAW on-board without YUV42RGB X X 5.04 (0.037s)

Theora over Wi-Fi X X 1.25 (0.054s)

Theora on-board X X 1.03 (0.026s)

Custom over Wi-Fi 10.079 (0.073s) 9.981 (0.076s) 9.904 (0.079s)

Table 7.1: FPS measurements in different configurations within ROS2 envi-
ronment

Please note that the experiments have been done under the following
conditions:

• Package v4l2 camera is used to read and transport images. The pack-
age works as following:

– the images are read directly from memory using mmap() in YUV422 -
YUY2 format (native camera format),

– the images are converted to RGB color encoding using cv bridge

package,

– the images are transported using image transport, image trans-

port plugins (equipped with compressed image transport and
theora image transport) with default configuration,

– the package is alternated to accommodate image resize for this
experiment and the image resizing is done just before YUV422 -
YUY2 to RGB conversion,

– the package is implemented in C++ with attention to memory
management (the image is cloned only when necessary).

1Description of the Theora technology is available at the official website - https:

//www.theora.org/

69

https://www.theora.org/
https://www.theora.org/

Darko Lukic: Results and Interpretation

• Camera is configured to 15 FPS.

• FPS measurements are done using ros2 topic hz.

• The Wi-Fi network performance measurements are performed using
iperf3 and the following results acquired:

– 16.4 Mbits/sec for transfer from PC to Raspberry Pi Zero W and

– 13.8 Mbits/sec for transfer from Raspberry Pi Zero W to PC.

• White noise is simulated by putting finger on the camera. The as-
sumption is that the low light condition produces a lot of white noise.

The measured data transfer between the Raspberry Pi Zero W and the
PC during the publishing of the raw images is 12.8Mb/s. Since every image
is sent in RGB format, that means 7Mbits per image (8× 3×640×480

1024×1024), or at
1.62 FPS, it is 11.4Mbits/s. Therefore, by sending raw images, we expected
to encounter the limitations of the Wi-Fi network.

In all other methods that require compression (JPEG or Theora), the
CPU on Raspberry Pi Zero W was hitting 100% of workload. Therefore, in
those cases, the CPU is the bottleneck.

It may look strange that a slightly higher FPS is achieved with the
images that are transferred over the network (“JPEG over Wi-Fi”) than
the images transferred locally (“JPEG on-board”). It is worth noting that
the Raspberry Pi Zero W has a relatively slow CPU and that the tool used
to measure performance has to allocate a certain amount of CPU time.
Since the network is not the bottleneck here, but CPU, the effect of another
process using the CPU is noticeable.

70

Darko Lukic: Results and Interpretation

0 10 20 30 40 50 60
time (s)

0

20

40

60

80
CP

U
(%

)

0

5

10

15

20

25

30

Re
al

 M
em

or
y

(M
B)

(a) CPU usage while publishing raw RGB images

0 10 20 30 40 50 60
time (s)

0

2

4

6

8

10

CP
U

(%
)

0

5

10

15

20

25

30

Re
al

 M
em

or
y

(M
B)

(b) CPU usage while publishing compressed (on the GPU) JPEG
images

Figure 7.1: Comparison of CPU usage for two transfer modes, raw RGB
(named as “RAW over Wi-Fi” in Table 7.1) and JPEG compressed on GPU
(named as “Custom over Wi-Fi” in Table 7.1)

To improve JPEG compression performance and effectively increase the
FPS, the compression is offloaded to GPU. Comparison of JPEG image com-
pression performed on CPU and GPU is depicted in Figure 7.1. It shows

71

Darko Lukic: Results and Interpretation

that even though there is no compression involved, just image publishing,
the images are too large for Raspberry Pi Zero W to be transmitted effi-
ciently, and the process allocates a lot of CPU time. In contrast, the images
compressed with GPU are the small and it is much easier for the CPU to
deal with the images (pack them to ROS2 messages and transfer them to
the other nodes).

7.1.3 Performance Comparison in Mapping

In Section 5.3, a custom ROS2 node for mapping is described. Here, the
custom ROS2 mapping node will be used by the e-puck2 physical and sim-
ulated robot for performance comparison. In that purpose, a physical map
is created, as well as its digital copy in Webots (see Figure 7.2).

BLUE
ROOM

center at approx. (0.25, -0.2)

RED
ROOM

center at approx. (0.25, 0.2)

GREEN
ROOM

center at approx. (0.07, -0.2)

(a) Webots map

BLUE
ROOM

center at approx. (0.25,
-0.2)

RED
ROOM

center at approx. (0.25,
0.2)

GREEN
ROOM

center at approx. (0.07, -0.2)

(b) Real-world map

Figure 7.2: Webots and physical map used for the mapping benchmark with
room names and coordinate systems marked

To create the maps, both robots, physical and simulate, are programmed
to follow the same path (see Table A.1). This is done to minimize the
difference between the generated maps caused by differences in paths. All
maps are saved as pictures, and the comparison of the maps is shown in
Figure 7.3.

72

Darko Lukic: Results and Interpretation

0 20 40 60

0

10

20

30

40

50

60

Ground truth

0 20 40 60

0

10

20

30

40

50

60

Real-world

0 20 40 60

0

10

20

30

40

50

60

Simulation

Figure 7.3: Comparison of the ground truth map, map created by physical
robot (real-world) and map created by simulated robot (simulation)

One notices, that the quality of the maps generated in the simulation
and the physical robot are similar. However, to quantitatively compare the
quality of the maps we use IoU:

IoU =
Area of Overlap

Area of Union
(7.1)

In which Area of Overlap is a number of pixels that represent a wall
on both maps, while the Area of Union is a number of pixels represent the
wall in at least one of the maps.

The IoU gives us the results shown in Table 7.2.

Map IoU with ground truth map

Real-world #1 0.2792208

Real-world #2 0.2596006

Real-world #3 0.29588607

Simulated 0.2993197

Table 7.2: IoU of ground truth and other maps

The table shows that the quality of the maps is very similar. Further-
more, to compare whether the types of errors are similar in both maps, you
can check Figure 7.4.

73

Darko Lukic: Results and Interpretation

#1

#2#3

Figure 7.4: Error comparison of map obtained in simulation and real-world

The image shows three types of errors produced by mapping: sparse
walls, rounded corners, and invisible walls. Those three types of errors are
very similar on both maps.

• Error #1: Sparse walls are a result of a low sampling rate. The robot
rotates too fast to map all obstacles.

• Error #2: Rounded corners are result of ToF’ sensor wide Field of
View (FoV). The sensor doesn’t measure the distance to the point,
but rather it averages distance to all obstacles in its FoV.

• Error #3: The invisible walls are also caused by ToF’ sensor wide FoV.
While the robot rotates, the distance measurements to the obstacles
get averaged.

This experiment shows that even in more complex scenarios such as
mapping, the same controller gives very similar results. The simulated robot
not only replicates the same quality of mapping but also captures the same
defects. The observed behavior is exactly what we wanted to achieve as
it proves that the same controller works correctly with the simulated and
physical e-puck2 robots.

7.1.4 Performance Comparison in Navigation

Similar to the mapping, a navigation utilizes a lot of sensors. However, for
navigation ROS2 navigation2 package is used to verify if the ROS2 drivers
provide satisfying results with the community packages. The navigation is
configured to use a particle filter to fix the transformation between map and
odometry frame (although the weight of particle filter is much smaller in

74

Darko Lukic: Results and Interpretation

comparison to odometry). In addition, it uses the previously obtained map
in the mapping experiment.

0.00 0.05 0.10 0.15 0.20 0.25
X position [meters]

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

Y
po

sit
io

n
[m

et
er

s]

Figure 7.5: Path chosen by the simulated (red) e-puck2 robot and paths
chosen by the physical (blue) e-puck2 robot

In Figure 7.5, the comparison in navigation between physical and sim-
ulated e-puck2 robots is given. The figure is obtained by sampling robot’s
location reported by odometry at fixed intervals (sampling period is 0.5s).
The robots start from position (0, 0) and they have to move to the blue
room (see Figure 7.3). Therefore, in the figure you can see that the paths
chosen by the physical and simulated e-puck2 robots are very similar.

7.2 ROS2 Interface for E-puck2 vs Khepera IV

In this experiment, the goal is to verify whether the same ROS2 controller
can be used with different robots. As before, there are two tests. The first
is with a custom mapping node and the second is with the ROS2 commu-
nity navigation packages. A map for this experiment had to be bigger to
accommodate Khepera IV robot (see Figure 7.6).

75

Darko Lukic: Results and Interpretation

Figure 7.6: Map used to compare the behavior of e-puck2 and Khepera IV
with the same ROS2 controller

7.2.1 Performance Comparison in Mapping

In Figure 7.7 we can notice that both robots managed to map the environ-
ment.

Figure 7.7: Map produced by Khepera IV (left) and e-puck2 (right)

It proofs it is possible to use different robots with same ROS2 controller.
However, ToF sensor available on the e-puck2 robot provides visibly better

76

Darko Lukic: Results and Interpretation

performance in mapping compared to Khepera IV with ultrasonic sensors.
The main reason in poor map quality of produced by Khepera IV robot is
high noise in ultrasonic sensors.

7.2.2 Performance Comparison in Navigation

Navigation analysis is done in same way as in Section 7.1.4, but with a
different map (see Figure 7.8).

start

goal

robot’s X
direction

Figure 7.8: Navigation goal on the map

Similarly to the previous navigation comparison the result is shown in
Figure 7.9.

0.0 0.1 0.2 0.3 0.4
X position [meters]

0.0

0.1

0.2

0.3

0.4

Y
po

sit
io

n
[m

et
er

s]

Figure 7.9: Path chosen by e-puck2 (red) and path chosen by Khepera IV
(blue)

77

Darko Lukic: Results and Interpretation

7.3 Benefits of Generalized ROS2 Interface for We-
bots

Generalized ROS2 driver on e-puck2 robot produces the same ROS2 inter-
face as a specific ROS2 driver given in Chapter 3. Therefore, in this section,
a brief overview on using the generalized ROS2 driver with other robots will
be given.

7.3.1 Khepera IV Driver Analysis

In the first figure (Figure 7.10), a result of URDF export is shown. The
figure shows a different coordinate frames exported with the new Webots
API function.

Figure 7.10: Coordinate frames generated by URDF exporter

Another aspect is ROS2 API available in Table 7.3.

78

Darko Lukic: Results and Interpretation

Topic name Message type Description

/camera/camera info sensor msgs/CameraInfo Camera intrinsic parameters

/camera/image raw sensor msgs/Image Images from camera

/cmd vel geometry msgs/Twist Velocity control

/[position] infrared sensor (x12) sensor msgs/Range Infrared measurements

/[position] led (x3) std msgs/Int32 LED control

/[position] ultrasonic sensor (x5) sensor msgs/Range Ultrasonic measurements

/imu sensor msgs/Imu IMU measurements

/joint states sensor msgs/JointState Encoder measurements

/odom nav msgs/Odometry Odometry

/robot description std msgs/String URDF as a string

/tf tf2 msgs/TFMessage Dynamic transforms

/tf static tf2 msgs/TFMessage Static transforms

Table 7.3: ROS2 API for Khepera IV robot

The table shows that the ROS2 generalized driver managed to expose
devices to the ROS2 system.

7.3.2 Going Beyond Khepera IV and E-puck2

The ROS2 generalized driver is tested on many robots. In further text, a
two examples will be given, TIAGo++ and TurtleBot3 Burger.

TIAGo++ Robot

TIAGo++ robot is designed by PAL Robotics to work in indoor environ-
ments. Typically, the platform is used in research or light industry. To us,
the robot is interesting because it has a lot of joints2. Therefore, it is a good
test for the URDF exporter.

2A specific ROS2 driver was already developed, but the universal driver presented in
this thesis greatly extends its capabilities

79

Darko Lukic: Results and Interpretation

(a) TIAGo++ model in Webots

(b) TIAGo++ frames in RViz2

Figure 7.11: Result of URDF exporter on TIAGo++ robot

In Figure 7.11, TIAGo++ model is shown in Webots as well its coordi-
nates frames produced by the URDF exporter.

TurtleBot3 Burger Robot

TurtleBot3 Burger is a small and affordable, often used by ROS team as a
reference robot. For us, it was important to verify whether the generalized
ROS2 driver is compatible with the official ROS2 package3 provided by a

3The ROS2 TurtleBot3 package is available at https://github.com/ROBOTIS-GIT/

turtlebot3

80

https://github.com/ROBOTIS-GIT/turtlebot3
https://github.com/ROBOTIS-GIT/turtlebot3

Darko Lukic: Results and Interpretation

team behind TurtleBot3 Burger.

Figure 7.12: Webots world used to verify TurtleBot3 Burger mapping and
navigation capabilities

In the figures bellow a RViz2 view for SLAM (see Figure 7.13) and nav-
igation (see Figure 7.14) are given.

Figure 7.13: TurtleBot3 Burger mapping view in RViz2 (during the mapping
process)

81

Darko Lukic: Results and Interpretation

Figure 7.14: TurtleBot3 Burger navigation view in RViz2

The RViz2 views show that the TurtleBot3 package works as expected
without any code modifications. Overall, these experiments show that the
generalized ROS2 driver scales well to all tested scenarios.

82

Chapter 8 Conclusion and Fu-
ture Work

ROS2 interfaces are developed for the e-puck2 physical robot and a variety
of simulated robots. A Webots support for ROS2 is improved, providing
facilities for automatic creation of a ROS2 interface for various robot models.
The ROS2 interfaces provide a firm abstraction over the robot’s simulated
and physical hardware. Thus, the ROS2 interface allows a ROS2 controller
to work with the physical or simulate e-puck2 robot, or with any other
simulated robot, without changes needed to the ROS2 controller. The results
prove that researchers can quickly validate their ROS2 controllers on the
e-puck2 physical or simulated robot and other Webots simulated robots.
Effectively closing the loop between the simulation and the physical world.

The thesis summarizes the implementation details of a ROS2 driver for
Webots. It shows how Webots distance sensors, IMU related sensors, LEDs,
cameras, motors, and encoders are mapped into ROS2 interface. It intro-
duces how odometry, velocity control, and coordinate frames are generated
from basic Webots devices, such as motors and encoders.

The ROS2 driver is also developed for the e-puck2 physical robot, and
major challenges in its implementation are given. It provides a solution
to various problems originated from a low-performance computer with an
Armv6 architecture. Most notably, the tackled challenges are cross-compilation,
offloading image compression to GPU, unit testing in CI (with x86 architec-
ture), and overall performance issues.

A possibility to automate the creation of ROS2 interface for Webots
is observed. Therefore, a universal ROS2 driver for Webots is developed.
New features are introduced to Webots core to allow automatic creation of
the ROS2 interface, most notably URDF export. On top of the Webots, a
modular software layer is implemented that performs API conversion from
Webots to ROS2.

The whole project is publicly available on GitHub, allowing users and
us to further improve it:

• Webots to ROS2 conversion layer covers the following Webots nodes:
Camera, DistanceSensor, Accelerometer, Gyro, InertialUnit, LED,
Lidar, LightSensor, Robot, Motor and PositionSensor. The list

83

of the covered nodes is not exhaustive and more of them should be
covered.

• URDF export does not support visual elements, although the visual
elements are useful in RViz2 visualizations. Moreover, it does not
support Hinge2Joint, nor BallJoint.

• In certain use cases pi-puck extension is not necessary and ROS2 could
be deployed directly to the MCU. This will reduce battery usage and
overall system complexity, but it will also put limitations such as a
dynamic discovering of communication entities within a network.

• Additional effort should be put in implementing ROS2 package with
SLAM for e-puck2 and similar robots (robots with few distance sensors
which have a very limited range and wide FoV).

84

Bibliography

[1] A. G. Millard, R. Joyce, J. A. Hilder, C. Fleşeriu, L. Newbrook,
W. Li, L. J. McDaid, and D. M. Halliday, “The Pi-puck extension
board: A raspberry Pi interface for the e-puck robot platform,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sep. 2017, pp. 741–748, iSSN: 2153-0866.

[2] J. M. Soares, I. Navarro, and A. Martinoli, “The Khepera IV Mobile
Robot: Performance Evaluation, Sensory Data and Software Toolbox,”
in Robot 2015: Second Iberian Robotics Conference, L. P. Reis, A. P.
Moreira, P. U. Lima, L. Montano, and V. Muñoz-Martinez, Eds. Cham:
Springer International Publishing, 2016, vol. 417, pp. 767–781, series
Title: Advances in Intelligent Systems and Computing.

[3] K. Viswanathan, “Introduction to Robotics - Dead Reckoning.” [On-
line]. Available: https://www.cs.cmu.edu/∼16311/s07/labs/NXTLabs/
Lab%203.html

[4] D. Jones, “VideoCore IV - MMAL.” [Online]. Available: https:
//picamera.readthedocs.io/en/release-1.13/api mmalobj.html

[5] T. Foote, “tf: The transform library,” in 2013 IEEE Conference on
Technologies for Practical Robot Applications (TePRA). Woburn, MA,
USA: IEEE, Apr. 2013, pp. 1–6.

[6] O. Michel, “Cyberbotics Ltd. WebotsTM: Professional Mobile Robot
Simulation,” International Journal of Advanced Robotic Systems, vol. 1,
no. 1, p. 5, Mar. 2004, publisher: SAGE Publications.

[7] R. T. Vaughan and B. P. Gerkey, “Really Reusable Robot Code and
the Player/Stage Project,” Tracts on Advanced Robotics, 2007.

[8] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot Oper-
ating System,” ICRA Workshop on Open Source Software, p. 6, 2009.

[9] C. Chen, Y. Tock, and S. Girdzijauskas, “BeaConvey: Co-Design
of Overlay and Routing for Topic-based Publish/Subscribe on Small-

85

https://www.cs.cmu.edu/~16311/s07/labs/NXTLabs/Lab%203.html
https://www.cs.cmu.edu/~16311/s07/labs/NXTLabs/Lab%203.html
https://picamera.readthedocs.io/en/release-1.13/api_mmalobj.html
https://picamera.readthedocs.io/en/release-1.13/api_mmalobj.html

World Networks,” in Proceedings of the 12th ACM International Con-
ference on Distributed and Event-based Systems. Hamilton New
Zealand: ACM, Jun. 2018, pp. 64–75.

[10] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-
puck, a Robot Designed for Education in Engineering,” Proceedings of
the 9th Conference on Autonomous Robot Systems and Competitions,
p. 7, 2009.

[11] O. Michel, “Webots: Symbiosis Between Virtual and Real Mobile
Robots,” in Virtual Worlds, ser. Lecture Notes in Computer Science,
J.-C. Heudin, Ed. Berlin, Heidelberg: Springer, 1998, pp. 254–263.

[12] O. Michel, F. Rohrer, and N. Heiniger, “Cyberbotics’ Robot Curricu-
lum,” Mar. 2014, accepted: 2014-03-13T17:07:57Z Publisher: Wiki-
books. [Online]. Available: http://doer.col.org/handle/123456789/4117

[13] M. Kashyian, S. L. Mirtaheri, and E. M. Khaneghah, “Portable Inter
Process Communication Programming,” in 2008 The Second Interna-
tional Conference on Advanced Engineering Computing and Applica-
tions in Sciences, Sep. 2008, pp. 181–186.

[14] J. Shen, D. Tick, and N. Gans, “Localization through fusion of discrete
and continuous epipolar geometry with wheel and IMU odometry,” in
Proceedings of the 2011 American Control Conference, Jun. 2011, pp.
1292–1298, iSSN: 2378-5861.

[15] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in Pro-
ceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004., vol. 1, Jun. 2004,
pp. I–I, iSSN: 1063-6919.

[16] M. Ben-Ari and F. Mondada, Elements of Robotics. Cham:
Springer International Publishing, 2018. [Online]. Available: http:
//link.springer.com/10.1007/978-3-319-62533-1

[17] A. Astolfi, “Exponential Stabilization of a Wheeled Mobile Robot Via
Discontinuous Control,” Journal of Dynamic Systems, Measurement,
and Control, vol. 121, no. 1, pp. 121–126, Mar. 1999.

[18] E. Hairer, S. Norsett, and G. Wanner, Solving Ordinary Differen-
tial Equations I, ser. Springer Series in Computational Mathematics.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, vol. 8.

[19] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and
rotation vectors,” Matrix, vol. 58, 01 2006.

86

http://doer.col.org/handle/123456789/4117
http://link.springer.com/10.1007/978-3-319-62533-1
http://link.springer.com/10.1007/978-3-319-62533-1

[20] P. Michael, “A conversion guide: Solar irradiance and lux illuminance,”
2019. [Online]. Available: http://dx.doi.org/10.21227/mxr7-p365

[21] N. Laković, M. Brkić, B. Batinić, J. Bajić, V. Rajs, and N. Kulundžić,
“Application of low-cost vl53l0x tof sensor for robot environment detec-
tion,” in 2019 18th International Symposium INFOTEH-JAHORINA
(INFOTEH), 2019, pp. 1–4.

[22] D. Jones, “VideoCore IV - Hardware.” [Online]. Available: https:
//picamera.readthedocs.io/en/release-1.13/fov.html

[23] D. Lukic, “Dual Fisheye Camera Calibration,” Swiss Federal Institute
of Technology in Lausanne (EPFL), Tech. Rep., 2019. [Online].
Available: https://lukic.io/files/Dual Fisheye Camera Calibration.pdf

[24] M. Meyer, “Continuous Integration and Its Tools,” IEEE Software,
vol. 31, no. 3, pp. 14–16, May 2014, conference Name: IEEE Software.

[25] J. Borenstein and Liqiang Feng, “Measurement and correction of sys-
tematic odometry errors in mobile robots,” IEEE Transactions on
Robotics and Automation, vol. 12, no. 6, pp. 869–880, Dec. 1996.

[26] S. Macenski, F. Mart́ın, R. White, and J. G. Clavero, “The Marathon
2: A Navigation System,” arXiv:2003.00368 [cs], Jul. 2020, arXiv:
2003.00368.

[27] “URDF - ROS Wiki.” [Online]. Available: http://wiki.ros.org/urdf

[28] D. Eberly, “Euler Angle Formulas.” [Online]. Available: https:
//www.geometrictools.com/Documentation/EulerAngles.pdf

[29] K. Zheng, “ROS Navigation Tuning Guide,” arXiv preprint
arXiv:1706.09068, p. 23, 2017.

[30] O. Michel and F. Rohrer, “The Rat’s Life benchmark: competing cogni-
tive robots,” in Proceedings of the 8th Workshop on Performance Met-
rics for Intelligent Systems - PerMIS ’08. Gaithersburg, Maryland:
ACM Press, 2008, p. 43.

[31] F. Mondada, E. Franzi, and A. Guignard, “The Development of Khep-
era,” in Experiments with the Mini-Robot Khepera, Proceedings of the
First International Khepera Workshop, no. CONF, 1999, pp. 7–14.

[32] “ros-industrial/industrial ci,” Jul. 2020, original-date: 2015-11-
18T15:15:44Z. [Online]. Available: https://github.com/ros-industrial/
industrial ci

[33] “ROS.org | About ROS,” library Catalog: www.ros.org. [Online].
Available: https://www.ros.org/about-ros/

87

http://dx.doi.org/10.21227/mxr7-p365
https://picamera.readthedocs.io/en/release-1.13/fov.html
https://picamera.readthedocs.io/en/release-1.13/fov.html
https://lukic.io/files/Dual_Fisheye_Camera_Calibration.pdf
http://wiki.ros.org/urdf
https://www.geometrictools.com/Documentation/EulerAngles.pdf
https://www.geometrictools.com/Documentation/EulerAngles.pdf
https://github.com/ros-industrial/industrial_ci
https://github.com/ros-industrial/industrial_ci
https://www.ros.org/about-ros/

[34] J. M. O’Kane, A gentle introduction to ROS. Leipzig: Amazon, 2014,
oCLC: 935415054.

[35] N. Correll, N. Correll, and Open Textbook Library, Introduction to
Autonomous Robots. MIT press, 2016, oCLC: 1136484039.

[36] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems Journal, vol. 4, no. 1, pp. 25–30, 1965, conference Name:
IBM Systems Journal.

88

Appendix A Mapping Compari-
son

Command Description

position=[0, 0] Initial pose

orientation=−π
2 Explore the hall, rotate

orientation=0 Explore the hall, rotate

position=[0.28, 0], orientation=0 Move near RED entrance

orientation=π
2 Rotate towards RED

position=[0.28, 0.2] Move inside RED

orientation=0 Explore RED, rotate

orientation=−/pi Explore RED, rotate

orientation=−π
2 Rotate towards BLUE

position=[0.23, -0.2] Move inside BLUE

orientation=0 Explore BLUE, rotate

orientation=π
3 Explore BLUE, rotate

orientation=−π
2 Explore BLUE, rotate

orientation=-2.7*pi Explore BLUE, rotate

orientation=π
2 Rotate towards the hall

position=[0.23, 0] Go to the hall

orientation=π
3 Explore the hall, rotate

orientation=π Rotate towards back

position=[-0.1, 0] Go to the GREEN entrance

orientation=π
2 Explore hall, rotate

orientation=π
4 Explore hall, rotate

orientation=2
3π Explore hall, rotate

orientation=−π
2 Rotate towards the GREEN

position=[-0.1, -0.2] Move inside GREEN

orientation=0 Explore GREEN, rotate

orientation=π
3 Explore GREEN, rotate

orientation=−π
2 Explore GREEN, rotate

orientation=3
4π Explore GREEN, rotate

Table A.1: List of poses used to map the environment

89

	Introduction
	Problem Statement
	Project Objective
	Document Structure

	Background and Related Work
	ROS
	ROS Messages
	ROS Distributions

	Robotics Platforms
	E-puck2
	Khepera IV

	Webots
	Related Work
	ROS Support for E-puck2
	ROS Support in Webots

	E-puck2 Simulation and ROS2 Interface
	Introduction
	Webots within ROS2
	Covered Sensors and Actuators
	Differential Drive
	Distance Sensors
	Light Sensors
	Inertial Measurement Unit
	Camera
	LEDs
	Final Interface

	ROS2 Interface for Physical E-puck2
	Introduction
	ROS2 on Raspberry Pi OS
	ROS2 Cross-compilation

	Programming Language
	Camera
	Camera Optimization
	Differential Drive

	Software Quality Assurance
	ROS2 Node Unit Tests
	Code Quality Tests
	Continuous Integration

	E-puck2 Demos
	Visualizations
	Drive Calibration
	Custom Mapper Node
	Navigation Integration

	The Generalization of ROS2 Interface for Webots
	Introduction
	Design
	ROS2 Transformations
	Transforms from URDF

	ROS2 Wrapped Devices
	Differential Drive
	Range

	Results and Interpretation
	Comparison of Physical and Simulated E-puck2
	ROS2 Interface Endpoints Comparison
	Camera Performance Comparison
	Performance Comparison in Mapping
	Performance Comparison in Navigation

	ROS2 Interface for E-puck2 vs Khepera IV
	Performance Comparison in Mapping
	Performance Comparison in Navigation

	Benefits of Generalized ROS2 Interface for Webots
	Khepera IV Driver Analysis
	Going Beyond Khepera IV and E-puck2

	Conclusion and Future Work
	Bibliography
	Mapping Comparison

