
Multi-robot Navigation in Cluttered and Dynamic Environments

Qiu Huajian1, Vuk Pajovic2, Darko Lukic3

Abstract— The control of multi-robot navigation can be a
challenge in real world. In this paper, we implement and opti-
mise our strategy in two cluttered and dynamic environment.
Finally, the algorithm is transferred into real e-puck robots and
its performance justify the effectiveness of our design choice.

I. INTRODUCTION

Mobile robots can replace static sensors to perform dense
measurements in the environment, like localising odour
source in the air or detecting bacteria in a lake. Those tasks
can be performed with a single mobile robot or we can
leverage by utilising multiple mobile robots to speed up
the task execution [1], [2]. These environments are usually
clattered and reliable communication is not feasible, and
keeping a robot in a group is a challenge. Therefore, in the
following text, we propose a solution based on Reynolds
rules [3] and potential field [4].

A brief overview on theoretical background will be given
in the section Experiments II where necessary concepts will
be explained, such as Reynolds rules, potential field and
PSO. Moreover, in the section our implementation will be
carefully described such as communication between robots,
flock avoidance strategy and limitation of real-robots.

After, in section Results III performance measurements for
different scenarios will be given. Convergence of PSO will
be explained as well as comparison of different algorithms.
Finally, in Conclusions III a discussion on the results will be
given.

II. EXPERIMENTS

In order to test control algorithms the following scenarios
are used. One or more groups of robots are located in
imperfect environment, interacting with each other to achieve
the target while maintain the collective behaviour. The goal
of the project is to implement multi-robot navigation in
cluttered and dynamic environments. Two scenarios are
presented, in each, our robots have to avoid obstacles within
the arena while retaining the collective aggregation.

A. Reynolds Rules

According to Reynolds rule, the coordination inside flock-
ing behaviours is based on three simple rule: cohesion,
separation and alignment. There is no central control and
each robots behave autonomously. It introduces robustness

1School of Basic Sciences, Mathematics, École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
huajian.qiu@epfl.ch

2School of Engineering, Robotics, École Polytechnique Fédérale de Lau-
sanne (EPFL), 1015 Lausanne, Switzerland vuk.pajovic@epfl.ch

3School of Engineering, Robotics, École Polytechnique Fédérale de Lau-
sanne (EPFL), 1015 Lausanne, Switzerland darko.lukic@epfl.ch

and wide adaptability to multi robots control in imperfect
environment. While in other control algorithms, like leader-
follower, the flocking performance highly depends on spe-
cific individuals. This will introduce high variance in the met-
rics evaluation and make optimisation of parameters harder.
Therefore, to achieve precise localisation and robustness, we
choose Reynolds rules to implement our controlling strategy.

B. Migration Urge

To make the robots move in the desired direction, we
plan to implement the migratory urge. Since we don’t have
access to the global positioning system we have to rely on
odometry. But, the odometry is prone to drift and we expect a
slight deviation from the goal position. The migration urge is
represented as a normalised vector inside the local coordinate
system of each robot. The vector starts from the average
position (centre) of group and ends at a same point inside
the map. Since it is a normalised vector with length 1, the
speed contribution magnitude of this term will not change in
the progress. The apparent movements of robots will be the
mixture of different actions stimulated by environment.

C. Potential Field

In order to avoid obstacles, certain obstacle avoidance
algorithm had to be used. The two main candidates for
this were using Braintenberg with the structure like neural
network, and potential field algorithm for obstacle avoidance.
Firstly, using Braitenberg where are many coefficients to
be optimized. After all, with in mind to perform PSO,
Braintenberg would need more coefficients, while with the
implementation of the potential field, this should be reduced.
Moreover, with the comparison to Braitenberg, potential field
algorithm performed more naturally with flocking used and
also since it has less coefficients, it was faster and more
intuitive to calibrate it. Even though potential field works
with obstacles which are circular, it is assumed that it is the
case here even though in the Webots simulation, all of the
obstacles were rounded. It didn’t affect much the results, as
it was seen later. The first parameter used was OBS RANGE,
which is the range within the obstacles are effecting robots.
If they are inside that range from the obstacle, then potential
field is affecting robots, and thus the potential field vector
should be calculated. Direction of the potential field vector
is calculated to be normal to the shortest vector connecting
robot and the obstacle. Given that each sensor has position,
by interpolating between the strengths of each sensor, the
final vector could be estimated. Because there were not
exactly the positions of each sensor in the datasheets of
epuck, this meant that that vectors are assumed as in the

figure 1. All of the vectors are normilized. The final vector
is estimated with the following equation:

Fig. 1. Description of the sensor vectors

nx =
1

sumsens

NUMsens∑
1

si ∗ vxi (1)

ny =
1

sumsens

NUMsens∑
1

si ∗ vyi (2)

Where, si is sensor intensity and xi and yi are coordinates
of each sensor. After estimation of the vector connecting
obstacle and a robot, potential field vector has direction
which is normal to this one. Magnitude of potential field
vector is calculated as a value of sensor with maximal value
subtracted by OBS RANGE and multiplied by the second
parameter, which is OBS GAIN, or the gain of potential
vector. Furthermore, with the sensor used, values which are
provided are from the range of 50 until 4000. And when
robot is away values are around 70, but when it is pretty
close values are going high exponentially. Because of that,
in order to have more fluent way of reacting to the obstacle,
the logarithm is added, and final construction of vector looks
like:

V = obsgain(log10(smax − obsrange))~V (3)

With the vector of potential field, simple P controller is
implemented to make robot to follow the reference, which
is in this case potential field vector.

D. Flocking with potential field algorithm

Given that the objective was to make robots going in a
more natural way, mixing of two main algorithms had to be
done in the same way. This prevented using state machine,
because with empirical experience of it, sometimes it doesn’t
act natural. Because of that, in order to calculate the the
final speed of robot, firstly the supposed speeds from two
algorithms are both measured. After, the following principle

is used for each wheel when there robot is inside the range
of the obstacle.

vi =
log10(smax −OBS)

log10(smax)
pi + (1− (

log10(si −OBS)

log10(smax)))
fi,

(4)
Where i stands for left or right wheel, p is output of potential
field and f is output of flocking. If robot is not in the range
of the obstacle, only f speeds are used on the wheels.

E. Communication

E-Puck utilises IR sensors to communicate with other
robots. Since it uses a light there are multiple limitations:

• it requires line of sight,
• modulation method allows only very limited throughput,
• maximum distance is limited on around 30cm and
• the communication is generally unreliable.

The mentioned limitations of IR communication on E-Puck
reflects the real-world communication issues between mul-
tiple robots. Therefore, we designed our algorithms to be
robust with the unreliable communication.

Two controllers are designed, one which utilises short
messages (1 byte per message) and other which uses long
messages (6 bytes per message). Both controllers period-
ically broadcast messages and other E-Pucks receive them.
Based on the message the robot can determine range, bearing
and ID of the other robot which allows the robots to know
each other relative position. This is minimal amount of
information for Reynolds flocking.

1) Extended Messages: An alternative controller which
uses extended messages is created. In addition to ID, the
second controller also broadcasts absolute position of the
robot (see Table I). It allows a group of robots to determine
its absolute position more precisely, e.g. if a robot experience
a huge drift it can use absolute position of the neighbouring
robots to come back on the track. This is especially useful in
the presented scenario where robots purely rely on odometry
for localisation.

TABLE I
FORMAT OF A LONG MESSAGE

Name Group ID Robot ID X Position Y Position
Type (bytes) Integer (1) Integer (1) Float (2) Float (2)

This idea can be further extended to additionally improve
the localisation by sending a confidence of determined
position. The purpose of this controller is to be used as
comparison, to show if the flocking algorithm can leverage
of additional communication throughput.

F. PSO Optimisation

PSO (Particle Swarm Optimisation) is optimisation tech-
nique that creates a set of solutions as swarm of particles
moving in virtual search space. The technique can be used
to improve behaviour of a single or multiple robots by
evaluating performances for different robot configurations
[5]. In our problem we identified two potential places to

utilise this technique, for improving obstacle avoidance and
flocking. The obstacle avoidance algorithm is based on
potential field and has only two parameters that have clear
physical representation, therefore, it will not be covered in
this project. In contrast, flocking uses 6 parameters and they
are not easy to calibrate manually.

PSO can be utilised to optimise performance of a group
or individual, solution can be public or private and team
diversity can be homogeneous or heterogeneous. Since our
results are measured by performance of group and robots
should not be specialised, an optimal solution is to use group-
public-homogeneous co-optimisation strategy.

Run Webots simulation
with given parameters Calculate fitness Move particles

Save PSO states in fileReset simulationGenerate solution

Fig. 2. Flocking optimisation using PSO in Webots

Webots has support of numerical optimisations 1 and it
is used to evaluate solutions proposed by PSO (see Fig.
2). The performance evaluation starts by position robots
in a world (see Fig. 3), PSO proposes parameters that
are sent to the robots, robots use the parameters to move
around, the flocking performance is measured and particles
are moved accordingly. Then, PSO can propose another set
of parameters and the cycle repeats.

Fig. 3. Example of a world used performance evaluation in Webots

The purpose of PSO in our project is to find a set
parameters for flocking that satisfies the following:

max

(
1

N

N∑
k=1

o[t]c[t]v[t]

)
(5)

where o[t] is orientation metric (see Eq. 7), c[t] cohesion
metric (see Eq. 8) and v[t] velocity metric (see Eq. 9).

Generally, the robots operate in noisy environment (dif-
ferent conditions like obstacles, presents of other robots,

1Webots documentation: Using numerical optimization methods
(https://cyberbotics.com/doc/guide/using-numerical-optimization-methods)

unreliable communication etc) and for this purpose noise-
resistant implementations of PSO (eg. evaluating parameters
multiple times) can determine parameters that are better
suited for real-world usage. Even though it is useful we didn’t
apply it because it would require a lot of time to be evaluated.

G. ”The devil is in the detail”

During the implementation of all algorithms, there were
always limitations when it comes to the real world. There
is a problem in communication within the robots, which
is not really robust and precise. Range and bearing from
the IR sensors are not working behind the obstacles and
also they depend on other robots orientations. Because of
that, firstly when robots are turning really fast, processing of
the messages are turned off. By doing it robot won’t catch
bad information and since it is turning fast only when it is
avoiding the obstacle, it doesn’t affect the algorithm. On the
other hand, because communication is not enough robust,
sometimes it happens that when robot is in front and it loses
connection, it continues going forward without knowing for
other robots. In this case, if it is in the front, it will never be
in the proximity of others so it will lose them. To prevent
that, there is mechanism, which is calculating when robot is
in front of the flock and losing connection, while turning it
off for 5 seconds, making possible for others to catch them
and retain the communication.

1) Crossing Other Flocks: In dynamic environments it is
very hard for robots to bypass obstacles because obstacles
are not static. One such scenario is a flock robots that has to
bypass another flock of robots. In this scenario we can exploit
the fact they all can communicate to each other and optimise
flocking. Therefore, two solutions are proposed. The first
solution is based on a flock avoiding another flock which can
defined as macroscopic dispersion (see Fig. 4) - individual
robots are not directly aware they need to avoid other flock.
The second solution is simple, whenever a robot notice a
robot from a group of higher priority in its neighbourhood
the robot stops. This allows robots to not disturb other flock
during obstacle avoidance.

F1>

F1>

F1>

F1>

F1>

<F2

<F2

<F2

<F2

<F2

Fig. 4. Obstacle avoidance using dispersion on macroscopic level

III. RESULTS

In this section results obtained in Webots simulation, with
real e-puck robots, and gap between real-world and the

simulation will be presented. General metric for comparison
is given by the following expression:

p̄[t] =
1

t

N∑
k=1

o[t]c[t]v[t] (6)

where o[t], c[t] and v[t] are given by the Eq. 7, 8 and 9
respectively.

o[t] =
1

N

∣∣∣∣∣
N∑
k=1

eiψk[t]

∣∣∣∣∣ (7)

c[t] =

(
1 +

1

N

N∑
k=1

dist(xk[t], x̄k[t])

)−1

(8)

v[t] =
1

vmax
max(projφ(x̄[t]− x̄[t− 1]), 0) (9)

A. Simulation

In the table (see Tab. II) above typical performance mea-
surements are given.

TABLE II
PERFORMANCE MEASUREMENT IN DIFFERENT SCENARIOS EVALUATED

IN 900 ITERATIONS

Scenario Typical Fitness [10−4]
Short messages
Potential field

obstacles.wbt
4.53

Short messages
Potential field

obstacles tough.wbt
2.14

Long messages
Braitenberg

crossing.wbt
2.84

Short messages
Potential field

crossing.wbt
3.8

B. PSO

As described, PSO is used to improve flocking perfor-
mance and in this section PSO results will be elaborated for
multiple scenarios.

1) Flocking among obstacles - obstacles.wbt:
First, PSO is applied on robots that operate in world
obstacles.wbt (see Fig. 7) and the fitness values are
presented in the following plot (see Fig. 5) with configuration
defined in Tab. III.

First, the flocking parameters are calibrated manually and
slightly deviated parameters are used to create initial swarm.
Even though, the parameters are initially calibrated PSO
managed to improve further to obtain even better metrics.
After 25 × 20 (data on the plot is aggregated, see Alg. 1)
evaluations PSO hit the plateau and it is not able to pro-
vide any better result. For the further improvement flocking
algorithm needs to be changed or PSO should be run with
different configuration.

0 10 20 30 40 50 60
Evaluation #

6.00

6.05

6.10

6.15

6.20

6.25

6.30

6.35

M
ax

im
um

 fi
tn

es
s v

al
ue

1e 4

Fig. 5. PSO fitness values in obstacles.wbt aggregated using size of
bin 20 (see Alg. 1)

TABLE III
PARAMETERS USED TO CONFIGURE PSO

Name Value
Parameters 6
Swarm Size 6

Neighbourhood Size 1
Neighbourhood Type Fixed Radius

Max Velocity 2
Personal Best Attraction 2

Neighbourhood Best Attraction 2
Simulation Steps 700

2) Flocking among other robots - crossing.wbt:
Even though a configuration for the following PSO optimisa-
tion is the same as for obstacles.wbt (see Tab. III) it is
interesting how PSO handles an environment which changes
over time. In this environment we have two group of robots
moving towards each other (see Fig. 3) and the objective is
to bypass each other while still maximising the metrics.

0 5 10 15 20 25
Evaluation #

3.8

4.0

4.2

4.4

4.6

4.8

5.0

M
ax

im
um

 fi
tn

es
s v

al
ue

1e 4

Fig. 6. PSO fitness values in crossing.wbt aggregated using size of
bin 20 (see Alg. 1)

However, even though PSO managed to improve perfor-
mance (see Fig. 6) the fitness values are more volatile. The
reason for the volatile results is dynamic environment and
inconsistent fitness measurements between multiple evalu-

ations which PSO cannot handle very well. Also, we can
observe significantly lower performance compared to the
previous scenario due to lower velocity - robots are more
densely distributed than obstacles in obstacles.wbt.

C. Real-world

Real-world behaviour is similar until certain point. First,
communication is different and estimation of position is
not well done. Sometimes, robot is not able to see other
flock members, which makes flocking difficult. With loss of
communication, usually robots are losing formation, and in
most cases it ends with one robot leaving group. Since the
objectives of the course were not to estimate performance
in the real-world, here quantitative analysis is not done. In
the second scenario, the proximity sensors have higher noise
when detecting other e-pucks, which makes more difficult
for them to avoid each other.

IV. CONCLUSIONS

The project implements a set of basic rules that allow
robots to perform a flocking behaviour. It is realised using
Reynolds rules of flocking and in addition obstacle avoidance
algorithm is implemented. Two possible obstacle avoidance
algorithms are evaluated and with the potential field algo-
rithm, PSO optimization is performed. In the end, proposed
controller is implemented on the real epuck where few
drawbacks are observed. Most common problem is lack of
communication and mistakes in calculating relative positions
between each other, as well as not being able to communicate
when there is an obstacle in between.

APPENDIX

Algorithm 1: Algorithm used to aggregate PSO
performance evaluations (fs)
aggregated fs← []
while i < length(fs) do

fs subset = fs[i : i + bin size]
aggregated fs.append(aggregated fs)

Fig. 7. obstacles.wbt in Webots

REFERENCES

[1] J. M. Soares, A. P. Aguiar, A. M. Pascoal, and A. Martinoli, “A
distributed formation-based odor source localization algorithm - de-
sign, implementation, and wind tunnel evaluation,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), Seattle,
WA, USA, 2015, pp. 1830–1836.

[2] A. Quraishi, A. Bahr, F. Schill, and A. Martinoli, “Autonomous
Feature Tracing and Adaptive Sampling in Real-World Underwater
Environments,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA), Brisbane, QLD, 2018, pp. 5699–5704.

[3] C. Reynolds, Flocks, Herds, and Schools: A Distributed Behavioral
Model

[4] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in 1991 IEEE International
Conference on Robotics and Automation Proceedings, 1991, pp.
1398–1404 vol.2.

[5] J. Pugh, A. Martinoli, and Yizhen Zhang, “Particle swarm optimization
for unsupervised robotic learning,” in Proceedings 2005 IEEE Swarm
Intelligence Symposium, 2005. SIS 2005., Pasadena, CA, USA, 2005,
pp. 92–99.

